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The positive contemporaneous comovement between aggregate inventories and
sales is a well-known stylized fact that guides the assessment of models and
aggregate implications of inventory behavior. This paper highlights an overlooked
feature that durable input inventory movements lag sales movements by around
three quarters. This lagged comovement is discernible both in the unconditional
cyclical components of data and in the impulse responses to identified aggregate
shocks. To assess its quantitative significance, I develop a tractable supply chain
production problem that is capable of reproducing the lagged comovement. In
this model, producers are required to order critical inputs from suppliers one
quarter in advance and they occasionally adjust their optimal order sizes based
on forecasts of their own future sales subject to information frictions. I embed the
production problem into a multisector New Keynesian model with input-output
relations. Following a monetary shock, relative to a counterfactual scenario in
which the inventory-sales comovement is fully synchronized, the estimated model
demonstrates dampened responses of aggregate output over the first year but more
gradual recovery over later horizons due to the reduced sensitivity of user cost of
capital with respect to real interest rate changes.
JEL Code: E22, E23, E32, G31

Macroeconomists have long been interested in how inventory behavior has affected aggregate
outcomes because inventories are procyclical and volatile (Ramey and West 1999). In particular,
the capability of generating a positive contemporaneous cross-correlation between inventories and
sales is widely considered to be a requirement for an inventory model to be useful for shedding light
on aggregate implications. By introducing inventories into a macroeconomic model, a majority of
the existing studies have examined the implications on the volatility of aggregate output, another
contemporaneous second moment.

Going beyond the contemporaneous inventory-sales comovement, this paper establishes an
overlooked fact that, especially for durable input inventories, the cross-correlation is much stronger
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between inventories and lagged sales.1 I argue that capturing this overlooked lead-lag relation is
important because it provides crucial information on the timing of how the impact of an aggregate
shock propagates across the economy and supports a new interpretation on how inventories participate
in this process. To that end, I develop a tractable model featuring frictional production activities
along a serial supply chain embedded in a durable manufacturing sector of a New Keynesian
framework. In this model, the decline in durable sales induced by a monetary policy shock is
transmitted from the most downstream producers to their suppliers with delay due to frictions,
generating lagged inventory-sales comovement as observed in data. General equilibrium predictions
suggest that the delayed transmission of aggregate shock along the supply chain results in a timing
difference in how the changes in interest rates are translated into aggregate GDP changes. Relative
to a counterfactual scenario in which the movements of inventories and sales are fully synchronized,
the baseline outcomes with lagged inventory-sales comovement demonstrate smaller aggregate GDP
decline in the first year, and more gradual decline toward a trough, but slower recovery after that.
Such differences are largely due to the information frictions faced by producers placing orders
from suppliers that effectively lower the sensitivity of investment and utilization of capital and
durable consumption goods with respect to changes in real interest rates. This is a new insight
into how inventory behavior can affect aggregate outcomes that would not be recognized with only
contemporaneous correlations.

As an empirical contribution that motivates this paper, I first document that the movements of
durable input inventories lag movements of durable sales by about three quarters in the unconditional
cyclical components of aggregate time series data. This is reflected by the cross-correlation coefficients
between the cyclical components of inventory and different leads or lags of sales. I then show that
the lagged comovement is also evident in the estimated impulse responses with respect to identified
aggregate shocks. In particular, I focus on the responses to monetary shocks identified based on the
Romer and Romer (2004) shocks extended by Wieland and Yang (2020). After a contractionary
monetary shock that raises the nominal interest rates, durable sales experience a decline, reaching a
trough by the end of the first year. In contrast, durable input inventories remain mostly unchanged in
the first year, only start to decline in the second year and reach a trough in the third year. Although
both sales and inventories decline following monetary shocks, the durable input inventories comove
with a substantial lag. This empirical pattern is robust for the durable input inventories but seems to
hold less well for the other types of inventories, especially when considering the changes induced by
the monetary shocks. I therefore deem the lagged inventory-sales comovement as a distinct feature
of the durable input inventories and focus on this specific type of inventories.

Why do the movements of durable input inventories lag the movements of sales? How does
knowing this fact change the way how we understand the aggregate implications of inventory
behavior? To address such questions, I need a structural model that is capable of reproducing
the lagged inventory-sales comovement observed in data. Prior studies have considered embedding

1Input inventories refer to the stock of goods held by manufacturers for their production that are not yet part of
the output. Based on the classification by the Bureau of Economic Analysis (BEA), they include inventories in two of
the three stages of fabrication: “materials and supplies” and work-in-process.
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inventory problems based on different rationales into macroeconomic environment (e.g., Khan and
Thomas 2007; Wen 2011). However, to the best knowledge of the author, they are not readily
applicable for capturing the lagged comovement observed for durable input inventories. Intuitively,
in anticipation of a future decline in sales due to a contractionary monetary shock, producers would
set a lower inventory target on average because of the lowered expected value of holding inventories.2

Such a model would make a counterfactual prediction that inventory movements should lead sales
fluctuations.

To understand this limitation of existing models in reproducing the lagged inventory-sales
comovement, I draw on knowledge outside of the economics literature for inspiration. In the field
of supply chain management, a substantial amount of effort has been dedicated to understanding
the so-called bullwhip effect, a phenomenon that involves the increasing amplification of demand
variability along a supply chain (Giard and Sali 2013). This literature often considers the lack of
shared information on the final demand, which results in the use of order data from the immediate
downstream customer for forecasting future demand, to be a cause of the bullwhip effect (Lee,
Padmanabhan and Whang 1997). Numerous studies conclude that improving information shared
among supply chain members could substantially improve the profitability (e.g., Metters 1997).

What can we learn from management scientists’ effort on mitigating the bullwhip effect? I identify
two closely related real-world characteristics of manufacturing production that are not stressed
enough by the inventory problems examined by macroeconomists. First, in reality, production for a
wide range of products happens in multiple stages across different producers along a supply chain
that do not share sufficient information among themselves. For this reason, the information relevant
to production decisions may well come from past order sizes that do not necessarily align with the
current aggregate state of the economy. Second, since a supply chain member may rely on the order
information from its direct customers for making production arrangements, delay in responding to
the changes in demand from customer producers may be further accumulated as the supply chain
member itself makes adjustment with its own suppliers. As long as the adjustment for production
arrangements at each stage is not flexible enough, a change in demand from the most downstream
customers may not reach the upstream producers instantly as it passes through the production
stages. With these two characteristics in mind, I develop a supply chain production model that aims
to capture the essence of these missing details.

The model consists of a serial supply chain in which varieties from one production stage are
delivered to producers in the next stage as critical inputs for their production. The production
technology takes the same functional form that combines the critical inputs with a bundle of other
input factors. Three main assumptions govern the model outcomes. First, since production takes
time, the critical inputs passed along the supply chain must be ordered one quarter in advance
when the producers who use these inputs for production have not observed their own sales. Second,
producers observe their own historical sales perfectly but infer aggregate sales only from noisy private

2The decline in the expected value can arise from both the lowered expected future sales and the increase in
financial cost.
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signals and their own historical sales. Third, producers receive critical inputs in each period but only
adjust the size of the order placed for their critical inputs occasionally in a Calvo (1983) fashion.

The first assumption specifies the timing for decision making and justifies the presence of
inventories in this model. The lead time for acquiring the critical inputs is the sole reason for input
inventories to exist in this model. In particular, the level of input inventories at the end of a period
is exactly the size of the order for the critical inputs placed at the beginning of the period.3 The
second assumption specifies the information frictions faced by the producers when they choose the
order size for their critical inputs. I consider an environment where the demand fluctuations from the
immediate downstream customers arise from both idiosyncratic taste shocks and aggregate shocks.
The result is that producers make biased predictions on future order sizes due to the difficulty
in distinguishing fluctuations in order sizes induced by aggregate shocks from those induced by
idiosyncratic taste shocks. Lastly, the third assumption affects the relevant time horizons under
consideration when producers choose their order size. Intuitively, when the frequency of adjustment
is low, producers make production arrangements based on their forecasts over a longer span of time,
and hence any bias in their forecasts results in more sustained deviations from the optimal choices
in the absence of frictions. This third assumption adds more flexibility to the model for reproducing
the impulse responses observed in data and also smooths out the inventory responses.4

The model is parameterized to reproduce the impulse responses of durable input inventories
following a monetary shock when paths of changes in sales, nominal interest rates and factor prices
induced by a monetary shock are fed into the model. The model is able to fit the empirical target
remarkably well. To achieve the fitness, the critical inputs and the bundle of other input factors
need to demonstrate relatively strong complementarity; the signals on aggregate shocks need to be
uninformative; and the persistance of idiosyncratic taste shocks need to be high. These requirements
seem to be plausible and are broadly in line with the popular beliefs among management scientists.
In particular, the latter two requirements suggest that, from the lens of the model, producers
are ordering critical inputs as if they perceive the past sales changes will persist over time and
completely ignore the dynamic effects of monetary shocks. Furthermore, introducing Calvo-style
sluggish adjustment of order size does improve the fitness of the model. It effectively strengthens
the impact of information frictions.5

To quantify the aggregate significance of the lagged inventory-sales comovement observed in data,
I embed the production problem into a fully-fledged multisector New Keynesian model. The durable
manufacturing sector is a special sector in which production happens along a supply chain consisting
of three stages. Production in the other sectors is simply characterized by a Cobb-Douglas production
function that converts inputs to outputs within the same period. The GE framework features linkages
across six production sectors via the use of intermediate inputs (the input-output network) and the

3Throughout the paper, I assume that a period is a quarter of a year.
4The Calvo-style adjustment does not necessarily slow down the changes in aggregate inventory level. Its effect

depends on how producers perceive future changes. This will be discussed in Section III and revisited in Section VI.
5Another reason for introducing this Calvo-style friction is that, by adjusting its strength, it absorbs the impact of

other aspects of model calibration, such as the number of production stages, which are fixed unchanged.
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production of sector-specific investment goods (the investment network) as in Horvath (2000). The
need for at least two production sectors is obvious as the durable input inventories are only relevant
to durable goods industries but not the entire economy. The inclusion of the linkages across six
sectors is motivated by the special role of the durable manufacturing sector in a production network
as a hub for investment goods (vom Lehn and Winberry 2021). On top of this detailed multisector
framework, I introduce real and nominal frictions following conventional wisdom as in Smets and
Wouters (2007). Specifically, I allow external habit formation for the final consumption bundle,
investment adjustment costs and variable capital utilization along with the sticky sectoral prices
and sticky wages. This results in a GE framework that is flexible enough to generate hump-shaped
impulse responses to aggregate shocks and allows directly matching model impulse responses with
empirical counterparts. Following Christiano, Eichenbaum and Evans (2005), the GE model is
parameterized in two steps. First, I externally calibrate the majority of parameters for preferences
and sector-specific production technology based on the input-output tables, investment flow data
and convention. Second, I estimate the remaining parameters, which are all relevant to the dynamic
behavior of the model outcomes, by solving a nonlinear least squares problem that minimizes the
distance between the model impulse responses to monetary shocks and their empirical counterparts
obtained from structural vector autoregressions.

With the calibrated GE model that incorporates the supply chain production problem for the
durable manufacturing sector, I examine how the model outcomes would be different when the
parameters affecting the inventory behavior are altered. Starting from the baseline specification
with parameters that intend to capture the lagged inventory-sales comovement, I raise the relative
precision of the signals on aggregate shocks and weaken the Calvo-style adjustment friction to
synchronize the inventory and sales movements in model. Holding the path of real interest rates
unchanged, I find that the aggregate GDP responses become substantially stronger in the first year
and reach a trough earlier under this counterfactual scenario. I interpret this different result as
suggesting that supply chain frictions can have a substantial impact on the transmission of monetary
shocks.

What explains the different model outcomes? Following Auclert, Rognlie and Straub (2020), I
conduct a general equilibrium decomposition of the GDP responses following the monetary shock.
In the GE model, the total effect of a monetary shock on an aggregate variable can be decomposed
into two components: the intertemporal substitution effect and the user cost effect.6 The former is
attained via the impact of real interest rate changes on the consumption Euler equation. The latter
is attained via the no-arbitrage condition for holding sectoral capital and durable consumption goods.
The decomposition result shows that the different impact on aggregate GDP, especially over the
short horizons, is mostly due to the smaller user cost effect under the baseline scenario. Capturing
the durable input inventory behavior results in lower sensitivity of investment and utilization of
capital and durable consumption goods with respect to changes in real interest rates. Intuitively, the

6Strictly speaking, there is also an effect due to changes in inflation rates. However, since this effect on GDP is
small in the calibrated model, it is ignored.
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aggregate shock’s impact on sales affects the sales of suppliers with delay under the baseline scenario
with lagged inventory-sales comovement. The gradual transmission of sales fluctuations upward
along the supply chain in turn results in gradual adjustment of input factors among suppliers. In
contrast, under the counterfactual scenario, changes in downstream sales immediately affect the
sales of upstream suppliers and hence the factor demand among all producers simultaneously. This
distinction on how the impact of the aggregate shock is transmitted upward along the supply chain
alters the strength of the user cost effect. This is a novel model implication that has not been
considered in prior works.

Related to the above finding, I additionally show that it is the information friction on aggregate
sales that contributes to an intertemporal shift of the GDP impact, which results in the different
timing for GDP to reach a trough. The Calvo-style adjustment affects the strength of the GDP
responses over the later horizons, but does not mechanically alter the timing of the aggregate outcomes.
Furthermore, counterfactual experiments suggest that increasing the average upstreamness of the
supply chain members further strengthens the intertemporal shift of the GDP impact, due to the
lowered rate at which changes in downstream sales spread across the producers.

Relations to the Literature

This paper is related to several strands of literature. First, the empirical finding on the inventory
behavior joins a long-lasting literature on inventory facts that are related to business cycle fluctuations.
Blinder (1981) and Blinder and Holtz-Eakin (1986) document the surprising extent to which business
cycle fluctuations can be accounted by inventory changes. Ramey (1989) raises the importance of
manufacturing input inventories which are more volatile than the other types of inventories. Several
papers including Mcconnell and Perez-Quiros (2000), Stock and Watson (2002) and Davis and Kahn
(2008) consider the possibility for changing inventory behavior to explain the Great Moderation
started around 1984. Wen (2005) examines the cyclicality of inventories over different frequencies
using a band-pass filter. Relative to these earlier works which focus on the contemporaneous
correlations involving aggregate inventories, I examine the correlations of inventories with the leads
and lags of sales and highlight the lagged inventory-sales comovement that holds particularly well
for durable input inventories.

Second, the model ingredients for the production problem developed in this paper is related
to, yet distinct from, several ideas in prior works. To begin with, several studies have considered
a direct connection between inventory levels and the cost of production. For example, Christiano
(1988) gives inventory stocks a direct role in the production function and views inventory volatility
as resulting from buffering unexpected shocks. Eichenbaum (1983, 1984, 1989) views inventories
as a device that allows producers to smooth production cost, instead of production level as in
conventional wisdom. In my model, input inventories are the output collected from suppliers for the
production in the proceeding period. The abundance of them affects the production rate and hence
producers determine their levels in an attempt to lower the present value of production cost. In the
macroeconomics literature, the notion of multistage production or time to build is first formally
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considered by Kydland and Prescott (1982) for the production of capital. More recently, Sarte,
Schwartzman and Lubik (2015) formulate an extended version of multistage technology that allows
freely shifting resources across the production of input inventories in different stages. There is a
key distinction between the multistage production considered in this paper and theirs. Namely,
I view production happening in different stages as being conducted by different producers along
a supply chain that only interact among each other via the information on order sizes. This is
very different from the problems considered in prior studies where the entire production process is
conducted as if there is a single producer that coordinates resources across different stages. The
distinction arises from the intention to capture the missing feature emphasized in the supply chain
management studies that supply chain members do not coordinate with each other in a manner
that results in optimal behavior for the entire supply chain (Lee, Padmanabhan and Whang 1997;
Metters 1997; Chatfield et al. 2004; Ouyang 2007). Furthermore, information frictions are introduced
as a Bayesian learning process in a manner similar to models developed in other contexts including
the price-setting problems (Morris and Shin 2002; Nimark 2008; Angeletos and Huo 2021). Unlike
the price-setting problems, production planning by an individual producer does not involve forming
anticipation on how other producers make choices. I therefore do not deal with the complications of
higher-order beliefs. For the model to maintain its prediction on lagged inventory-sales comovement,
what matters the most is the forecasting bias arising from the frictions.

Third, this paper is related to the studies aiming at understanding the aggregate implications of
inventory behavior. There are mainly two types of papers falling in this category. The first type
of papers are mainly concerned with how inventory behavior has affected output volatility. This
includes Khan and Thomas (2007), Wen (2011), Iacoviello, Schiantarelli and Schuh (2011) and
Wang, Wen and Xu (2014). More recently, Alessandria et al. (2023) explore the aggregate impact
of shipping delays in a setting where retailers running out of stock raise prices. The second type
of papers are not concerned with inventory behavior per se but use inventory behavior to infer
some other aspects of aggregate fluctuations. This includes Bils and Kahn (2000) and Kryvtsov
and Midrigan (2012) who assess the relative importance of countercyclical markup and nominal
cost rigidities based on the behavior of output inventories. My paper adds to this literature by
demonstrating a novel implication that durable input inventory behavior dampens the real effect of
monetary policy in the very short run by reducing the user cost sensitivity of investment decisions
with respect to real interest rate changes. Additionally, all the papers mentioned above only consider
the simplest form of supply chain consisting of only a single pair of supplier and customer (the dyadic
structure). An exception is Ferrari (2023), who considers an industry-level production network with
producers in each industry holding inventories. However, Ferrari (2023) abstracts away from the
frictions involved in ordering intermediate inputs as I do and solely uses the procyclical inventory
behavior to justify the amplification of final demand shocks along the supply chain.

Lastly, this paper is broadly related to the literature that investigates the relative importance
of various frictions based on estimated dynamic stochastic general equilibrium (DSGE) models.
Two well-known papers are Christiano, Eichenbaum and Evans (2005) and Smets and Wouters
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(2007). Relative to these papers, I focus on the relative importance of the durable input inventories
and estimate the parameters for other model components only for obtaining realistic quantitative
predictions. On the methodological front, I leverage the advances made by Auclert et al. (2021) and
Auclert, Rognlie and Straub (2020) on the use of sequence-space characterization of model outcomes.

The paper proceeds as follows. Section I documents the lagged inventory-sales comovement
for the durable input inventories. Section II introduces the supply chain production problem.
Section III discusses the capability of the model to reproduce the lagged inventory-sales comovement.
Section IV describes the general equilibrium framework for quantitative analysis. Section V considers
the aggregate implications of the inventory behavior by comparing baseline model outcomes with
counterfactuals. Section VI concludes.

I. The Lag in Inventory-Sales Comovement

Documenting the lagged comovement between durable input inventories and sales is an important
empirical contribution of this paper. In this section, I explain in detail how this empirical finding
is established. While the focus is on the durable input inventories, other types of inventories are
considered in Appendix B.

A. Unconditional Cross-Correlations

The monthly inventory and sales data for the empirical finding are based on the underlying detail
tables for National Income and Product Account (NIPA) from the Bureau of Economic Analysis.7

Unlike the inventory changes and final sales in the NIPA tables that are measured in terms of value
added as components of GDP, inventories and sales in the detail tables are monthly inventory stocks
and gross sales.8 For the empirical estimation, I focus on the sample over 1967:1–2007:12 before the
Great Recession.

Figure 1 plots the transformed data for input inventories and sales in the durable manufacturing
sector. To deal with the nonstationarity of the time series, I have computed both the annual growth
rate and the cyclical component of the original data. Two features of the data are noticeable
by observing Figure 1. First, echoing what earlier studies back in 1980s have emphasized, the
fluctuations in durable input inventories closely keep track of those of the sales, confirming the
well-known inventory-sales comovement.9 Second, by paying attention to the peaks and troughs, it
is not hard to see that input inventory movements tend to lag sales movements. That is, for the

7The NIPA underlying detail tables are considered to be the standard data sources among macroeconomic inventory
studies and have been employed for numerous studies over decades.

8Gross sales and inventory stocks are more natural measurement for considering inventory problems, as they are
closer to what economic agents observe for making decisions. Notice that BEA data have been adjusted to take into
account the discrepancy between book values and market values. Like earlier studies, I take the BEA data construction
procedures as given and view them as the best available aggregate data for US economy.

9When Blinder (1981) commented that “... to a great extent, business cycles are inventory fluctuations”, he was
comparing the peak-to-trough real GNP changes with the contemporaneous inventory changes, which are in roughly
similar magnitude. Similar peak-to-trough comparisons were used by Ramey and West (1999) for motivating the
importance of inventories.
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FIGURE 1: Real Input Inventories and Sales in Durable Manufacturing Sector

Note: Annual growth rates are computed as log differences with the one-year lag. Cyclical
components are two-year horizon forecast errors following Hamilton (2018).

durable manufacturing sector, the comovement is better described as lagged comovement rather
than contemporaneous comovement. Although this second feature is discernible from the raw data
before any transformation as well, a formal discussion of it is surprisingly absent in the literature.10

Loosely speaking, these two features combined together is what I call the “lagged inventory-sales
comovement”.

To highlight the timing of how durable input inventories comove with sales, I compute cross-
correlation coefficients between inventories and different leads or lags of sales, ρpInventoryt, Salest´lq
with different l. Figure 2 plots the results based on both the annual growth rates and cyclical
components. The two sets of results look very similar, both suggesting that the correlation coefficients
are larger when comparing inventory movements with the lagged sales. In particular, when we
consider only the contemporaneous correlation coefficients, the coefficients of 0.2 and 0.34 only
indicate some modest strength of comovement. However, when we look at the greatest correlation
coefficients attained when lagging sales by around three quarters, the correlation coefficients of

10The lagged comovement is consistent with another well-known feature that the inventory-to-sales ratio is counter-
cyclical. However, they are two different characteristics because countercyclical inventory-to-sales ratio can arise from
contemporaneous inventory-sales comovement with inventories move by a smaller dollar amount relative to sales. A
countercyclical inventory-to-sales ratio is not informative on the specific timing relation emphasized in this paper.
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FIGURE 2: Cross-Correlations between Durable Input Inventories and Sales

Note: The correlation coefficients are for ρpInventoryt, Salest´lq across different values of l.
Annual growth rates are computed as log differences with the one-year lag. Cyclical components
are two-year horizon forecast errors following Hamilton (2018). Dashed lines represent 90%
confidence intervals based on robust standard errors obtained from a GMM Newey and West
(1987) procedure.

0.68 and 0.63 suggest rather strong comovement relative to what the contemporaneous correlation
coefficients would suggest. In a nutshell, durable input inventory fluctuations lag behind sales by a
non-negligible amount of time.

How about the other types of inventories? In Appendix B, I repeat the estimation for other types
of inventories available from the same data source. The lag in the inventory-sales comovement seems
to be less important for the nondurable manufacturing sector. Yet, a somewhat similar pattern of
cross-correlation coefficients shows up for the output inventories in the durable wholesale sector and
the retail sector. If we only consider the unconditional comovement based on these cross-correlation
coefficients, the input inventories in the durable manufacturing sector does not seem to be the only
type of inventories that demonstrates the lagged inventory-sales comovement. However, once we
start to consider conditional comovements induced by specific aggregate shocks, the answer is going
to be different. In particular, as we move on to the next set of results, we see that for the durable
manufacturing sector, the lagged inventory-sales comovement also holds well when only considering
the changes induced by monetary shocks. Since the durable sector is more responsive to monetary
shocks, I consider it reasonable to focus on this sector for the main text.

B. Cross-Correlations Conditioning on Shocks

One way to think about the fluctuations of an aggregate variable over business cycles is to imagine it
being hit by various shocks in each period, with the observed outcomes as a combination of responses
to all shocks over the entire history. The structural shocks with concrete economic interpretations
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are typically not observed directly. For this reason, cross-correlation coefficients directly computed
from the annual growth rates or cyclical components depict the overall relations between inventories
and sales without taking a stance on the driving forces behind the fluctuations. In consideration of
later structural analysis, I examine inventory-sales comovement conditioning on monetary shocks,
for which arguably plausible instruments are readily available.11

1. Methodology

Formally, let tεitut denote a sequence of i.i.d. innovations to a Taylor rule of monetary policy. A path
of an aggregate variable txtut can then be written as

xt “

8
ÿ

l“0

Ψx
l ε
i
t´l ` x̃t

where the first term is an infinite-order moving-average (MA) process driven by the monetary shocks
and the second term is a residual. By conditioning on a specific structural shock, I ignore x̃t and
only consider the first MA(8) term for determining the dynamic cross-correlations between two
paths.12 It is not hard to see that for any two MA processes txtut and tytut with uncorrelated
innovations, their MA coefficients fully determine the cross-correlations between txtut and tyt´lut

for any l. Therefore, for an empirical investigation, the primary task is to estimate the structural
MA coefficients tΨx

l ulě0 and tΨy
l ulě0.

To that end, I estimate the impulse responses of various types of inventories and sales to
monetary shocks. With the real quantities transformed to the log scale, I estimate structural
vector autoregressions (SVARs) with the instrumental variable (IV) ordered the first.13 Each
SVAR estimation involves eight variables with the lag length being 12 months: the IV, inventory,
sales, industrial production index, unemployment rate, federal funds rate, deflator for the personal
consumption expenditures (PCE) and producer price index for commodities.14 Since only the
responses with respect to monetary shocks are of interest, only the ordering for the IV is relevant. For
the IV, I use the shock series constructed by Romer and Romer (2004) and extended by Wieland and
Yang (2020). Given the coefficient estimates from SVAR, I compute impulse response estimates for
the inventory and sales with respect to the Romer-Romer shocks over the first 49 monthly horizons.15

The impulse response estimates derived from the SVAR estimation are interpreted as estimates
for the structural MA coefficients with respect to monetary shocks for the first 49 horizons. The

11The results presented here are not special to monetary shocks. Similar results are obtained when considering
aggregate TFP shocks.

12As innovations to a structural shock that represents a primitive force, tεitut are by definition orthogonal to any
other structural force that drives the fluctuations.

13This is the VAR estimation with “internal instrument”. As shown by Plagborg-Møller and Wolf (2021), the same
estimand could be estimated with local projection (LP). The empirical findings hold true no matter whether estimation
is based on SVAR or LP. However, SVAR is preferred due to the simulation results by Li, Plagborg-Møller and Wolf
(2021). They find that estimators based on VAR demonstrate advantages over the bias-variance tradeoff.

14Selection of the additional variables included in the SVAR estimation follows Ramey (2016).
15The estimates are normalized so that the peak impact of Romer-Romer shocks on federal funds rate is 1%.
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dynamic cross-correlations between inventory and sales are computed based on these MA estimates.
Specifically, for a given time gap s ě 0, the dynamic cross-correlation coefficients between two MA(q)
processes txtut and tyt`sut are computed as

ρpxt, yt`sq “

řq´s´1
l“0 Ψ̂x

l Ψ̂
y
l`s

b

řq´1
l“0 pΨ̂x

l q2
b

řq´1
l“0 pΨ̂y

l q2
.

The order of the true structural MA processes induced by monetary shocks may be of infinite order in
principle. However, for practical purposes, it makes no meaningful difference to truncate the higher
order terms when computing the cross-correlation coefficients as the effects of monetary shocks
diminish over time. Below, I always use the 49 MA coefficients for computing the cross-correlations
and disregard any potential (negligibly small) effects from monetary shocks after the 49th quarter.

For statistical inference, I implement the recursive-design wild bootstrap following Gonçalves
and Kilian (2004). The confidence bands appear in the plots of estimation results are all pointwise
90% equal-tailed percentile confidence intervals based on bootstrap samples of 10,000 draws.

2. Results

The empirical finding established here is that, following a monetary shock, the responses of input
inventory lag responses of sales by about 3 quarters among the durable manufacturing industries.
Figure 3a shows the estimated impulse responses of durable input inventory and durable sales
with respect to monetary shocks. As expected, following an exogenous increase in federal funds
rate, the sales from the durable manufacturing sector demonstrates hump-shaped responses that
reach a trough at the end of the first year. The durable input inventory, in contrast, first remains
mostly unchanged during the first year and only starts to decline over the second year, reaching a
trough in the third year. The responses of input inventory are therefore considered to be lagging
behind sales by a substantial amount of time. To highlight this timing relations, Figure 3b shows
the dynamic cross-correlation coefficients between input inventory and sales across different leads
and lags. Here, a positive value on the horizontal axis represents the number of months between
the horizons of responses from input inventory and sales. The peak correlation coefficient of 0.88
is reached when comparing the responses of sales with the responses of inventory 9 months later
(excluding the contemporaneous one).16 The contemporaneous correlation coefficient ρpht, ytq takes
a smaller value of 0.65. This suggests that the lagged inventory-sales comovement observed in
the cyclical components of data is still relevant when only considering the fluctuations induced by
monetary shocks. For the other types of inventories, the lagged comovement following monetary
shocks seems to be less important (see Appendix B).

16To clarify the interpretation of such estimates, consider two structural MA processes that represent the fluctuations
of input inventory and sales induced by monetary shocks denoted as thtut and tytut respectively. The correlation
coefficient at the peak refers to ρpht`9, ytq being 0.88.
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(b) Conditional Cross Correlations
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FIGURE 3: Lagged Comovement Following Monetary Shocks in the Durable Sector

C. Comovement in Existing Models

Do existing models capture the lagged inventory-sales comovement observed in data? This is unlikely
for two reasons. First, the empirical regularity documented here is not explicitly taken into account
in prior work. It would be a coincidence if a model happens to demonstrate this feature. Second,
the presence of the lag is actually contradicting the anticipatory behavior that is often thought to be
captured by inventory movements. In particular, conventional wisdom suggests that if producers
anticipate rising sales in the near future, they should increase the inventories early to smooth
the production. This would suggest the opposite scenario that inventory movements lead sales
movements.

Given the vast amount of prior works on inventory behavior, I solve two representative models
under a partial equilibrium environment to verify that they do not capture the lagged inventory-sales
comovement. This is apparently not an exhaustive coverage of all variants of inventory models in
the literature. However, this process helps illuminate the reason why one should not view the lagged
inventory-sales comovement as a feature that can be readily reproduced in a standard inventory
model. Below, I consider a model based on the precautionary stock-out avoidance motive and a
model featuring multistage production (time to build). The former is adapted from Wen (2011);
while the latter is based on Sarte, Schwartzman and Lubik (2015). Essential model details are
provided in Appendix C. For both of them, I feed the same path of sales changes and real interest
rate path into the models and compute the responses in the input inventories. I then compute
cross-correlations based on the impulse responses in a way analogous to how they are obtained from
the empirical counterparts.

The results are shown in Figures 4 and 5. For both models, they generate the counterfactual
outcomes that input inventory movements lead sales movements. One reason for inventories to
decline is the rise of real interest rates that affects the intertemporal allocation of resources for

13
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FIGURE 4: Stockout-Avoidance Model: Partial Equilibrium Outcomes
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FIGURE 5: Multistage Production: Partial Equilibrium Outcomes

producing the inventories. However, even without feeding the real interest rate path into the models,
there is no sign of lagged comovement. The optimality conditions from these models imply immediate
responses in inventories that are in sharp contrast to what the data suggest. This suggests that
these models lack important ingredients that are in operation in reality. In Section IIID, I provide
further discussion on why these models do not generate the lagged inventory-sales comovement after
presenting the results for my model introduced in Section II.
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II. A Supply Chain Problem with Frictions

Is the lag in the inventory-sales comovement economically meaningful? The answer to this question
inevitably relies on some structure of the economy and the lag would otherwise be hard to interpret.
In this section, inspired by the real-world challenges encountered in supply chain management, I
develop a supply chain production problem that is capable of generating the lagged inventory-sales
comovement documented in Section I.

A. Model

Time is discrete and each period is a quarter denoted as t. There is a set of products that are only
produced along a supply chain. The supply chain consists of S stages with each stage operated
by a continuum of producers each producing a distinct variety. Producers purchase a bundle of
stage-specific varieties only from their immediate upstream suppliers as critical inputs and they sell
their own products to only the immediate downstream customers. Production in a stage involves
combining the critical inputs that must be ordered one period in advance with other input factors
(labor, capital and intermediate inputs). The problem faced by producers in all stages is identical
except that producers in the most upstream first stage do not require obtaining any critical input in
advance.

Timing.—At the beginning of each period, producer i in stage s with s ą 1 places orders for a
bundle of stage-ps´ 1q varieties before observing new orders for its own products. After learning
the order size, it combines the existing input inventories ordered in the previous period with other
factors to deliver the order received for the current period. In this model, input inventories exist
solely because of the one-period gap between the time when orders are placed and the time when
goods are used for production. As the critical inputs ordered at the beginning of period t arrive,
they are counted as end-of-period input inventories of period t.17 Input inventories are therefore
goods that are temporarily held in a production stage, to be passed from one stage to another along
the supply chain. They would not exist if the production process completes instantaneously.18

Production.—Let Yit|s be the stage-s output produced by producer i in period t. Xit|s´1 is a
bundle of stage-ps´ 1q varieties ordered by a stage-s producer in period t. Zit|s is a bundle of other
input factors used for production that can be freely allocated across producers in all stages and
satisfies

S
ÿ

s“1

ż 1

0
Zit|sdi “ AjtppKs

jtq
αjL

1´αj

jt ´ ϕpq
θjM

1´θj
jt

where Ajt is total factor productivity of sector j; Ks
jt is the aggregate capital utilization of sector-j

capital; Ljt is the aggregate labor input in sector j; ϕp is a fixed cost that lowers the effective
17I have assumed that critical inputs ordered in each period are only used for a single period after they arrive.

Therefore, there is no distinction between order size and the end-of-period input inventories. This also rules out the
possibility of accumulating input inventories for periods beyond the next quarter, which would complicate the model.

18This justification for the presence of inventories is similar to the time-to-build models including Kydland and
Prescott (1982) and Sarte, Schwartzman and Lubik (2015).
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value added component in production; and Mjt is the aggregate intermediate inputs excluding the
stage-specific critical inputs.19 The production technology takes the CES form and can be written as

Yit|s “ As

„

υ
1
κ pXit´1|s´1q

κ´1
κ ` p1 ´ υq

1
κZ

κ´1
κ

it|s

ȷ
κ

κ´1

.

Notice that Xit´1|s´1 is predetermined in period t and the producer adjusts only Zit|s for achieving
different output levels.

1. Information Frictions

A key ingredient of the model is the information frictions on aggregate sales. In this model, sales of
output varieties fluctuate for two reasons. First, there are various aggregate shocks that disturb
economic activities. Sales are affected by these aggregate shocks. Second, producers face idiosyncratic
taste shocks that affect market shares of the output varieties. These taste shocks are assumed to
be independent from any aggregate shock and persist over time. Whenever producers choose their
order size for the critical inputs, they make forecasts on the paths of future sales based on their
belief formed over existing information. Information frictions come into play when producers predict
future sales.

Noisy Signals.—In contrast to a model with complete information, producer i only observes its
own history of sales tYit´l|sulą0 perfectly at the beginning of period t. The volume of aggregate
sales Yt|s in each period is not a common knowledge due to the noisy information on the magnitude
of each innovation to aggregate shocks.20 For each innovation εt to a specific structural aggregate
shock that affects Yt|s, each producer receives a private signal zit of precision τv in every ensuing
period t` l with l ě 0 such that

zit “ εt ` vit with vit „ Normalp0, 1{τvq.

Suppose that each producer forms the same prior distribution on εt that is Normalp0, 1{τεq. With
Bayesian updating in each period t ` l, the average of the perceived magnitude of εt among all
producers satisfies

Eit`lεt ”

ż 1

0
Eit`lεtdi “

pl ` 1qτv
τε ` pl ` 1qτv

εt for l ě 0. (1)

Taste Shocks.—In addition to the noisy signals, producers also make use of the information on
their individual sales that are perfectly observed when they forecast future sales. Let tωit|sutě0

denote a path of market share intensities of output variety i in stage s and assume that it follows
19Production of this other input bundle takes the same form of technology as the one for sector-specific varieties to

be introduced in Section IV.
20Producers understand the dynamic effects of all aggregate shocks on aggregate sales perfectly. The missing

information is the magnitude of each innovation to aggregate shocks but not how they are transmitted and propagated.
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the same mean-zero AR(1) process across all varieties after log transformation

logωit|s “ ρω logωit´1|s ` εωit with 0 ă ρω ă 1. (2)

and that
ş1
0 ωit|sdi “ 1. Changes in ωit|s can be interpreted as being induced by some form of

idiosyncratic taste shocks. They result in changes in Yit|s that are independent from changes in
aggregate sales. It is assumed that the structure of the economy is perfectly understood by the
producers. However, since the aggregate sales tYt|sutě0 is not well observed, producer i does not
observe the true values of tωit|sutě0 either.

2. Adjustment Frequency

Related to the specification on information frictions is the frequency at which producers adjust the
order size for critical inputs. Suppose that producers choose the optimal order size in each period.
This is effectively assuming that producers update their information in every period. In this scenario,
there is no need to forecast changes beyond the next period. However, if producers adjust their
order size only occasionally, the same information will be utilized for forecasts over multiple horizons
and the choice made today will stay relevant for multiple periods. Any belief held by a producer at
a moment will therefore be more influential for its future outcomes.

In an attempt to introduce further flexibility into the model, I allow the choice on order size
to be adjusted only occasionally after a random amount of time in a fashion as in Calvo (1983).
Specifically, let λ be the probability that a producer readjust its order size for critical inputs in a
period. The event that a readjustment happens is assumed to be independent across producers.
Then, at the time when a producer adjusts its order size, the choice is made in anticipation of
all future changes discounted by the chance that they will stay relevant. More precisely, the cost
minimization problem at the time of adjustment can be written as

min
X˚

it|s´1
,

tZit`l`1|sulě0

Eit
8
ÿ

l“0

p1 ´ λql

śl
l1“0p1 ` it`l1q

”

p1 ` it`lqPjt`l|s´1X
˚
it|s´1 ` PZjt`l`1Zit`l`1|s

ı

s.t. Yit`l`1|s “ As

„

υ
1
κ pX˚

it|s´1q
κ´1
κ ` p1 ´ υq

1
κZ

κ´1
κ

it`l`1|s

ȷ
κ

κ´1

for all l ě 0

where X˚
it|s´1 is the order size set in period t for each period until the producer is able to adjust

it again; it is the nominal interest rate.21 The notation Eit stresses that the expectation is taken
over the subjective belief of the individual producer. Notice that if λ takes 1, then the problem
degenerates to a static version where adjustment is made in every period.

Depending on the perception on future changes, X˚
it|s´1 may vary across i. Yet, for aggregate

outcomes, it suffices to know the average across producers, which is denoted as EitX˚
it|s´1. The

21The discount factor for the lth period is βlΞt`lPt

ΞtPt`l
where Ξt is the expected marginal value of a dollar in period t

and Pt is the price index for the final consumption bundle to be introduced in Section IV. With additional model
details to be introduced, the discount rate is equal to

śl
l1“0p1 ` it`l1 q

´1 due to the consumption Euler equation.
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aggregate input inventories for all producers in stage s depends on the level of EitX˚
it|s´1 over the

history and the distribution of producers who have last adjusted in different periods. The law of
motion for the aggregate stage-ps´ 1q input inventories can be written as

Xt|s´1 “ λ
ÿ

lě0

p1 ´ λqlEit´lX˚
it´l|s´1 (3)

where λp1 ´ λql is the share of producers who have not adjusted again for l periods since their
last adjustment. The lack of flexibility in adjusting the order size strengthens the importance of
producers’ perception on future sales at the time of adjustment on shaping the aggregate behavior.

3. Pricing

For simplicity, I do not consider strategic behavior that may arise between supplier-customer pairs.
Instead, I assume that outputs from all producers along the supply chain are bundled together before
being distributed to the downstream customers in a market environment. Each individual producer
charges a constant markup over its marginal cost in each period. The downstream customers need
only consider the aggregate price for the critical inputs from the suppliers that are bundled together
using a CES aggregator. For the linearized model, the level of markup charged by the producers
is not required for solving the impulse responses. It suffices to know the log deviations in nominal
marginal cost over time. Since the most upstream stage-1 producers use only the factor bundle Zit|1,
their nominal marginal cost is always equal to PZt , the price index for this input factor bundle. Since
Zit|s is aggregated using the same technology for all s, all supply chain members face a common
price PZt for this bundle. For stage-s producers with s ą 1, their marginal costs vary depending on
their input inventories. Let µit|s denote the marginal cost of producer i in stage s. The individual
marginal cost satisfies

µit|s “ PZt

„

p1 ´ υqYit|s

Zit|s

ȷ´ 1
κ

. (4)

B. Optimal Partial Equilibrium Responses to Aggregate Shocks

To characterize responses to aggregate shocks, I consider a linearized economy described in terms of
log deviations around a steady state that are linear transformations of aggregate shocks. To get into
the essence without dealing with auxiliary complexity, here I only consider a partial equilibrium
where the sales of the most downstream stage-3 producers are exogenously given. Let variables
with a hat on top denote their log deviations and variables with a star on subscripts denote their
steady-state levels. Results in Appendix D imply that, when a stage-s producer adjusts at time t,
the optimal order size of the stage-ps´ 1q output satisfies

X̂˚
it|s´1 “

1

m

8
ÿ

l“0

βlp1 ´ λql
”

κχspP̂
Z
jt`l`1 ´ ît`l ´ P̂jt`l|s´1q ` EitŶit`l`1|s

ı

(5)
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where m is a constant only depending on parameters and

χs ”
p1 ´ υq

1
κZ

κ´1
κ

˚|s

υ
1
κX

κ´1
κ

˚|s´1 ` p1 ´ υq
1
κZ

κ´1
κ

˚|s

(6)

is a value arising from log-linearization that can be treated as a parameter.
Equation (5) says that given anticipated future price changes, the producer chooses the order

size based on its forecasted changes in its own future order sizes while it is not adjusting again. The
optimal order size chosen at time t therefore hinges on how producers perceive future sales. Taking
the average across all producers yields

X̂t|s´1 ”

ż 1

0
X̂˚
it|s´1di “

1

m

8
ÿ

l“0

βlp1 ´ λql
”

κχspP̂
Z
jt`l`1 ´ ît`l ´ P̂jt`l|s´1q ` EitŶit`l`1|s

ı

(7)

where the individual index i is dropped from X̂t|s´1 as the variable represents the aggregate changes.
With a CES aggregator for stage-s varieties, it must be that X̂t|s´1 “ Ŷt|s´1. Hence, Equation (7)
also characterizes how changes in one production stage affect the sales of the immediate upstream
suppliers. For characterizing aggregate responses, the remaining task is to characterize the average
belief on future order size EitŶit`l`1|s.

Suppose ε0 is the magnitude of a one-time shock to an aggregate variable that induces all
fluctuations since time 0.22 With Ŷit|s “ ω̂it|s ` Ŷt|s for all t, the observed changes in individual order
sizes are either due to idiosyncratic taste shocks or aggregate shocks. Since the aggregate change
Ŷt|s is linear with respect to the magnitude of ε0, Equation (1) implies that at any given time t ą 0,

EitŶt|s “
pt` 1qτv

τε ` pt` 1qτv
Ŷt|s.

With the observed Ŷit´1|s, the producer infers the component induced by the taste shocks. Since
EitŶit´1|s “ Ŷt´1|s, the average perception of the sales changes due to market share fluctuations
satisfies

Eitω̂it´1|s “ EitŶit´1|s ´ EitŶt´1|s “
τε

τε ` pt` 1qτv
Ŷt´1|s

which would be zero under full information. That is, with noisy signals on aggregate shocks, producers
discount the information on aggregate shocks on average and “mistakenly” attribute changes induced
by aggregate shocks to those induced by idiosyncratic shocks. Since the idiosyncratic shocks are
persistent as in Equation (2), the average prediction of future sales satisfies

EitŶit`l`1|s “
τε

τε ` pt` 1qτv
ρl`2
ω Ŷt´1|s `

pt` 1qτv
τε ` pt` 1qτv

Ŷt`l`1|s for l ě 0. (8)

22The characterization here for impulse responses with respect to a single shock is the building block for the realistic
case in which multiple shocks are hitting the economy in each period.
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Interestingly, Equation (8) combined with Equation (7) implies that the noisy information on ε0
induces backward-looking behavior among forward-looking individuals.23 Given a path of aggregate
sales tŶt|sutě0 and paths of price changes tP̂Zjtutě0, tP̂jt|s´1utě0 and t̂itutě0, Equations (7) and (8)
provide the average optimal order size set by stage-s producers when they adjust at time t. The
aggregate order size placed in each period by all stage-s producers including those who have not
adjusted again at time t can then be obtained with a log-linearized version of Equation (3). The
model counterpart of the input inventories in data is the sum of input inventories held by producers
in all stages. Let X̂t denote the log deviations in the aggregate input inventories. Assuming that all
producers have the same inventory-to-sales ratio h˚ in the steady state,24 we have

X̂t “

S
ÿ

s“2

X˚|s
řS
s“2X˚|s

X̂t|s “
1

h

S
ÿ

s“2

hS´s
˚ X̂t|s (9)

where h ”
řS
s“2 h

S´s
˚ .

Lastly, in Appendix D, I provide the characterization on the last piece of component required for
characterizing the partial equilibrium responses. Changes in the aggregate price index for stage-s
output after linearizing the model can be written as

P̂t|s “ P̂Zt `
1 ´ χs
κχs

pŶt|s ´ X̂t´1|s´1q for s ą 1. (10)

The dynamic behavior of input inventories is jointly characterized by Equations (7)–(10).

III. Input Inventory Responses in Model

In this section, I assess the capability of the model described in Section II for reproducing the lagged
inventory-sales comovement documented in Section I. To highlight the main insight, I examine the
production problem in isolation, taking as exogenous the path of sales of the most-downstream
producers. Towards the end, I discuss the distinction from some related models.

A. Bringing the Model to Data

To assess the capability of the model to reproduce the observed impulse responses shown in Section I,
I estimate the key model parameters by minimizing the Euclidean distance between model impulse
responses and their empirical counterparts following a monetary shock. Equations (7)–(10) imply
that given a set of parameters, the aggregate input inventory responses are fully determined if we
feed in the model a path of changes in sales in the most downstream stage S, a path of interest rate
changes and a path of input factor price changes. I therefore first obtain the impulse responses of
the empirical counterparts of these variables.

23Although the context is different, results sharing similar intuition may arise when considering a pricing problem.
For example, see Nimark (2008).

24The inventory-to-sales ratio here refers to h˚ ”
P˚|s´1X˚|s´1

P˚|sY˚|s
.
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FIGURE 6: Impulse Responses to a Romer-Romer Shock

The impulse responses of sales are obtained in the same way as before and have been shown in
Figure 3a. These estimates are interpreted as the empirical counterpart of impulse responses of sales
among the most downstream producers tŶt|Sutě0 following an innovation to the nominal interest rate
it. In the model, sales of producers that are not in the last production stage are counted as input
inventories. Impulse response estimates of the federal funds rate with respect to the Romer-Romer
shocks are treated as the empirical counterpart of the impulse responses of nominal interest rate
and are shown in Figure 6a. Selection for the empirical counterpart of the changes in the price
of the other input factor bundle tP̂Zt utě0 is less obvious. If we assume that input prices faced
by producers capture the changes in factor prices, then a producer price index (PPI) could be a
reasonable candidate. Here, I use the PPI of materials and components for manufacturing as a proxy
for factor prices. Since the price index of a final consumption bundle will be used for measuring the
overall price level of the model economy in the complete model to be introduced in Section IV, I
consider the ratio between the PPI and the measure of consumption price as a measurement for
PZt {Pt. The impulse responses of that are shown in Figure 6b.

I now turn to the relevant parameters for generating the impulse responses of input inventories
in the model. The distribution of the stages of production is not observed and clearly varies across
the products in the reality. Nonetheless, throughout the main text, I assume that there are three
production stages (S “ 3). Recall that producers in the most upstream stage 1 does not require
ordering critical inputs one period in advance and hence they do not hold input inventories. Only the
producers in the stages 2 and 3 hold input inventories. In addition, I assume that the idiosyncratic
taste shocks induce market share fluctuations that follow an AR(1) process. For the production
technology that combines the critical input with a bundle of other input factors, the elasticity of
substitution κ remains the same across production stages and χs defined in Equation (6) takes
the same value χ. With these simplifications, the parameters that need to be specified are the
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precision ratio of signal vs prior τv{τε, the persistance of taste shocks ρω, the arrival rate of the
Calvo adjustment shock λ, the technological parameters κ and χ.

In principle, the parameters can be chosen by solving the nonlinear least squares

min
Θ

r JpΘq ´ Ĵ sTW´1r JpΘq ´ Ĵ s

with JpΘq being the model outcomes associated with a parameter vector Θ and Ĵ being the empirical
counterpart used as targets. W is a diagonal weight matrix with weights proportional to the length
of each bootstrap percentile interval of each impulse response estimate. Here, only the impulse
responses of input inventory are involved in JpΘq. Model parameters would therefore be selected
by making the model predictions on input inventory responses as close as possible to the empirical
counterpart. However, with the impulse responses of input inventory alone as the empirical target,
not all parameters can be reliably determined by solely relying on the process described above.25 For
the technological parameters κ and χ, I directly impose their values to be 0.1 and 0.95 respectively.
The former is chosen to allow complementarity between the critical input and the other input factor
bundle. The latter affects the sensitivity of the adjustment in the other input factor bundle for
fulfilling the sales when the predetermined input inventory level deviates from the optimal level. A
greater value of χ weakens the responses of Ẑt|s with respect to Ŷt|s. This can affect the general
equilibrium outcomes but are not influential in the partial equilibrium context considered in this
section. The resulting parameters are collected in Table 1.

TABLE 1: Model Parameters for Partial Equilibrium

Estimated parameters
Precision of signal relative to precision of prior (τv{τε) 0.00
Persistence of idiosyncratic taste shocks (ρω) 0.99
Probability of adjusting order size (λ) 0.32

Calibrated technological parameters
Elasticity of substitution (κ) 0.10
Steady-state share (χ) 0.95

B. Evaluating the Model

Figure 7a shows that, under the estimated parameters, the model outcome fits the empirical target
remarkably well. However, for the model outcome to fit this well, the private signals need to be
uninformative. In other words, the model combined with the data does not suggest a meaningful
learning process among the producers on the magnitude of aggregate shocks. The model structure
implies that information frictions faced by the producers must have been substantial.26 With λ

25Intuitively, identification requires additional information not captured in Ĵ .
26An alternative interpretation could be that producers do not recognize the impulse responses induced by monetary

shocks.
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being around 0.3, the model also suggests quite strong inertia in the adjustment of order sizes placed
for the critical inputs.
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FIGURE 7: Partial Equilibrium Outcomes with Given Sales Path

(a) Stage-3 (Downstream) Outcomes
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(b) Stage-2 (Supplier) Outcomes
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FIGURE 8: More Details on Partial Equilibrium Outcomes

To gain insights on how the model achieves the fit, I examine the underlying components of the
model. Since the changes in historical sales are important for producers from different stages to
determine their order sizes for critical inputs, it is useful to see how the past sales affect their choices
when they have the chance to adjust order size. Figure 8a compares the average changes in order
sizes chosen by producers in the most downstream stage 3 when they adjust with changes in their
sales. Notice that because of the use of sales in the last quarter for forecasting future sales, changes
in order sizes closely follow changes in their sales in the last quarter. Except some small effects due
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to price changes, the producers do not respond in anticipation of future changes induced by the
aggregate shock. They perceive the sales changes as being induced by the persistent idiosyncratic
taste shocks. Figure 8a additionally shows the input inventories held by the producers. Recall
that in this model, the evolution of input inventories is driven by changes in order sizes. Due to
the staggered Calvo-style adjustment in order size, the changes in input inventories demonstrate
smoother gradual responses following the adjustment in order sizes. In Figure 8b, similar patterns
hold true for the stage-2 producers that serve as the suppliers for the stage-3 producers.27

The model involves three types of frictions. First, the outputs from the suppliers have to be
ordered one period in advance. Second, producers predict future sales without the information on
aggregate shocks. Third, order sizes are only occasionally adjusted. The first friction is necessary for
justifying the presence of input inventories. How about the other two? Figure 9a shows the best
that the model can achieve for fitting the empirical target when the private signals on aggregate
shocks are restricted to be precise. Since sales are declining over the first year, input inventories also
decline from the beginning without any sign of delay existing in the empirical counterpart. Figure 9b
shows the result when the Calvo-style adjustment friction is mostly removed with a high probability
of adjustment pλ “ 0.99q. In this case, the model outcome still demonstrates some extent of the
lagged inventory-sales comovement. However, the fitness with the empirical counterpart is noticeably
undermined as the input inventories reach the trough too early. Combined together, the results
suggest that the information friction is the most important ingredient for generating the lagged
comovement; while the sluggish adjustment greatly improves the fitness of the model.

(a) No Information Friction
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(b) No Adjustment Friction
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FIGURE 9: Outcomes from Restricted Models

How do the parameters for the CES aggregator between the critical input and the bundle of other
factors affect the model outcome? Figure 10a shows that as the elasticity goes from the baseline

27Notice that sales of stage-2 producers match the input inventories of stage-3 producers because the entire sales
arrive at the stage-3 producers as input inventories at the end of each period.
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(a) Elasticity of Substitution κ
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(b) Steady-State Share χ
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FIGURE 10: Sensitivity to Technological Parameters

level of 0.1 to 0.9, the response of input inventories on impact becomes more negative. Intuitively,
as interest rate increases, the opportunity cost of ordering the critical input rises due to the need
of incurring the cost in advance. As a result the producers would rather reduce the order size to
substitute more of the other input factors that do not require incurring cost in advance.28 To fit the
empirical target, the elasticity of substitution needs to be relatively small so that the impact of price
changes on the order sizes chosen by producers are limited. The value of the other parameter χ is not
well identified with the data utilized so far. Holding κ at the level of 0.1, varying the value of χ does
not affect the input inventory responses much. This parameter, however, will be more important
when considering the general equilibrium outcomes as it will affect the sensitivity of marginal cost of
production when the input inventory deviates from the optimal level that would be attained in the
absence of frictions. The value of χ needs to be large to prevent the marginal cost from responding
too much to aggregate shocks.

C. Plausibility

The capability of the model for reproducing the lagged inventory-sales comovement hinges on a
combination of assumptions. Here, I discuss the plausibility of the crucial ones based on suggestive
evidence.

The Lag in Order Fulfillment.—The model requires a one-quarter lag for receiving the critical
inputs from suppliers. For durable manufacturing industries, this assumption seems acceptable
based on data from the US Census Manufacturers’ Shipments, Inventories, and Orders (M3) survey.
Figure 11 plots the magnitude of unfilled order over time as a ratio over the monthly shipment

28A similar result holds if the suppliers provide credit to the customers. In that case the price of the critical input
would still increase as the cost of credit increases.
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among producers that hold unfilled orders.29 The solid blue line is for the data across all durable
manufacturing industries; while the thinner grey lines in the background are for the 2-digit SIC
level data among 7 durable manufacturing industries. Assuming that each dollar value of unfilled
orders is being fulfilled at the same rate, the data suggest that it typically takes about 4 months for
orders to be fulfilled. Since a substantial fraction of intermediate inputs for the durable sector come
from suppliers within the durable sector, the data from the M3 survey suggests that assuming a
one-quarter lag for receiving the orders is realistic.
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FIGURE 11: Unfilled Orders in Durable Manufacturing Sector

Note: Data are based on the US Census Manufacturers’ Shipments, Inventories, and Orders
(M3) survey. The grey lines represent data for seven 2-digit SIC level industries within the
durable manufacturing sector.

Information Frictions.—As an important model ingredient for generating the lagged inventory-
sales comovement, producers forecast future sales changes based on their own historical sales. Due
to the nature of information frictions, direct observation on how producers make forecasts are not
generally available. However, the presence of information frictions is a critical consideration in supply
chain management and their real-world significance can hardly be denied. In fact, management
scientists widely accept the presumption that orders are the only information firms exchange under
conventional supply chain management. For example, in an influential work, Lee, Padmanabhan and
Whang (1997) write that “Typically, an upstream supplier relies only on the order data from the
downstream retailer”. They deem the lack of information other than the orders received by producers
as a source of distortion, as the orders from the downstream customers do not necessarily reflect the
current final demand. Furthermore, a substantial amount of analysis in the supply chain management
literature concerns the performance of supply chain under different schemes of information sharing
(e.g., Cachon and Fisher 2000; Aviv 2001; Simchi-Levi and Zhao 2003; Ouyang 2007). Considering
the sole amount of efforts invested in understanding the impact of information sharing, I consider

29The ratios are readily available from the dataset and only cover manufacturers that report both unfilled order and
shipment. Although not all producers follow a “ship-to-order” mode, this ratio is still representative as the bulk of
shipment comes from firms that hold unfilled orders.
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the model ingredient on information frictions as a reasonable approximation to the reality.

D. Relations to Other Models

The inventory problem considered in this section is related but different from models considered
in prior work. The distinction is motivated by the goal of reproducing the lagged inventory-sales
comovement that the prior work does not consider. Here, I highlight the important distinctions from
some representative models.

The Precautionary Stockout-Avoidance Motive.—The precautionary stockout-avoidance motive is
a well-known justification for the presence of inventories (Kahn 1987). In Section IC, I have shown
results for a version of such models adapted from Wen (2011), where the same precautionary motive
is used to model input inventories.30 The core ingredient of the model is that the downstream
producers face idiosyncratic demand shocks in each period that are not observed at the time when the
producers obtain their inputs at the beginning of each period. Under this assumption, the inventories
held by each individual producer either runs down to zero because of demand that is sufficiently
strong or otherwise remains positive. Notice that, although the idiosyncratic demand shocks are not
observed, producers anticipate the (correct) aggregate variables in this model economy. In particular,
producers choose the same inventory level at the beginning of each period that is proportional to the
contemporaneous aggregate demand. There are only two possible ways for aggregate shocks to affect
the inventory level. First, aggregate shocks may alter the inventory-to-sales ratio because of their
impact on the expected value of inventories that are left to the next period. For this channel, the
effects are completely forward-looking because only the future changes matter. Second, aggregate
shocks may directly affect the aggregate sales. For this channel, since the optimal inventory level is
only proportional to the contemporaneous aggregate sales, there is no way for the inventory level
to track the lagged sales. Combined together, it is impossible for the optimal inventory stock to
reproduce the lagged inventory-sales comovement demonstrated in Section I in such a model.

Time to Build.—Kydland and Prescott (1982) consider a model in which investment goods take
multiple periods to build. Sarte, Schwartzman and Lubik (2015) develop a model that captures
this idea with a more flexible multistage production technology and view the goods involved in
each stage of the production as input inventories. In Section IC, I have shown that this model does
not generate the lagged inventory-sales comovement. To see why their model does not have such a
capability but mine does, it is important to recognize the distinctions on how production coordinates
across different stages. In particular, allocations of input factors across the stage-specific goods
in Sarte, Schwartzman and Lubik (2015) are determined via a set of production Euler equations
that equalize the discounted marginal product across goods in different stages within each period.
The coordination across different production stages is too efficient in the sense that there is no
suboptimal allocation of input factors from the perspective of a social planner. In contrast, in my
model, because producers order critical inputs in advance based on their biased forecasts, allocations

30Under this framework, the input inventories are simply output inventories from the upstream producers that are
held by the downstream producers.
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of input factors do not necessarily reflect the optimal allocations in a frictionless environment. In
particular, receiving unexpectedly high order sizes, only the most downstream producers are directly
exposed to the sales changes on impact. Suppliers of the directly affected producers only start to
adjust their order sizes for critical inputs when their own sales get affected with a delay. Such delayed
responses induce sales fluctuations going upward along the supply chain that do not necessarily align
with contemporaneous sales fluctuations among the most downstream producers. Such frictional
transmission of sales fluctuations across stages of supply chain is a unique feature of my model that
is distinct from the conventional time-to-build models.

pS, sq Models.—A popular class of inventory models is based on the pS, sq policy induced by a
fixed cost incurred when making orders (Caplin 1985; Khan and Thomas 2007). In the international
trade literature, Alessandria, Kaboski and Midrigan (2010) highlight the capability of an pS, sq

inventory problem for capturing the shipping lags and fixed costs involved in importing goods.
More recently, Alessandria et al. (2023) introduce shocks of shipping delays into the pS, sq inventory
problem to quantify the aggregate impact of increased shipping time observed during the pandemic
of COVID-19. Although the pS, sq models are powerful modeling devices, the lagged inventory-sales
comovement highlighted in this paper is not what such models intend to capture when they are
developed. For reasons that are similar to the other models, the pS, sq models by themselves are
not readily capable of generating outcomes considered in this section. In particular, although
Alessandria et al. (2023) highlight shipping delays involved in the orders for intermediate inputs,
both the shocks of interest and model mechanism considered are different. They are interested in
the shocks to shipping time observed during the unusual supply-chain disruptions following the
pandemic; while adjustment of orders for critical inputs is treated as a technological assumption that
is held unchanged under my model environment. In pS, sq models, idiosyncratic demand shocks are
needed for smoothing out the time when producers place orders; while in the model of this paper,
the idiosyncratic taste shocks are introduced to justify the bias in the sales predictions made by
producers. The possibility of stocking out is important for shaping how producers order and use the
inputs under an pS, sq model; while in my model, perception of future changes and frictions jointly
govern the ordering behavior.

IV. A Multisector New Keynesian Framework

In this section, I embed the supply chain production problem into a multisector New Keynesian
framework. This general equilibrium environment can be viewed as an augmented version of the
well-known one-sector framework considered in Smets and Wouters (2007) that combines a rich
set of conventional ingredients for real and nominal frictions. Since inventories are not directly
relevant to each sector, I consider six production sectors in the model: mining, construction, durable
manufacturing, nondurable manufacturing, real estates and other services. Production in these
sectors are interconnected via the use of intermediate inputs and an investment network as in Horvath
(2000), with modifications made for introducing nominal rigidities. Only the durable manufacturing
sector holds input inventories along the supply chain for critical inputs.
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A. Households

A representative household consumes a consumption bundle and supplies labor subject to constraints.
Preferences of the household can be expressed as31

E0

8
ÿ

t“0

βt

«

logpCt ´ λcCt´1q ´
N1`σl
t

1 ` σl

ff

where the utility flow from the individual consumption Ct is affected by the external habit formed
from the lagged aggregate consumption with a strength parameter λc; σl is the reciprocal of the
Frisch elasticity of labor supply. Following Erceg, Henderson and Levin (2000), the household
supplies labor of amount Nt to a continuum of labor unions that differentiate the labor supply to a
continuum of varieties. The labor unions have price-setting power under monopolistic competition.
All varieties of labor are aggregated into a bundle using a Kimball (1995) aggregator that results in
aggregate labor supply Lt for producers in the production sectors. The aggregate labor supply is
allocated across N production sectors without friction such that

Lt “

N
ÿ

i“1

Lit.

In addition to consumption and labor supply choices, the household holds a risk-free bond, and
determines the investment and utilization of a durable consumption good and capital for each
production sector. The budget constraint in period t can be written as

PtCt `Bt`1 ` PDt I
D
t `

N
ÿ

i“1

P IitIit “

W h
t Nt ` p1 ` itqBt ` rRDt Z

D
t ´ aDpZDt qsDt´1 `

N
ÿ

i“1

rRKit Zit ´ apZitqsKit´1 ` Πt

where Pt is the price index of final consumption bundle; Bt is the nominal face value of the risk-free
bond; PDt is the price index of the durable consumption good; IDt is the purchase of new durable
consumption good; P Iit is the price index of investment good for capital used in sector i; Iit is
the investment in sector-i capital; W h

t is the wage rate faced by the households; it is the risk-free
nominal interest rate. Profits earned by producers in any activity are distributed to the households
as dividends denoted as Πt.

The investment and utilization of durable consumption good and capital goods are modeled
31The utility function can be viewed as a limiting case of the one considered in Smets and Wouters (2007)

E0

8
ÿ

t“0

βt pCt ´ λcCt´1q
1´σc

1 ´ σc
exp

ˆ

σc ´ 1

1 ` σl
N

1`σl
t

˙

with the intertemporal elasticity of substitution σc goes to one. Indices for individual households are omitted as the
choices made by all households are identical.
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in the same fashion.32 With variable utilization level ZDt for durable consumption good and Zit

for sector-i capital, the rental income for these stocks depends on both the rental rates RDt and
tRKit ui and the cost for setting the utilization levels that is captured by a function aDp¨q for durable
consumption good and ap¨q for all capital goods. The law of motion for the sector-specific capital
can be written as

Kit`1 “ p1 ´ δiqKit `

„

1 ´ S

ˆ

Iit
Iit´1

˙ȷ

Iit

where δi is the depreciation rate for sector-i capital and Sp¨q is a function that captures investment
adjustment cost. The law of motion for the stock of durable consumption good is similarly written as

Dt`1 “ p1 ´ δDqDt `

«

1 ´ SD

˜

IDt
IDt´1

¸ff

IDt .

The final consumption bundle is produced by combining sector-specific consumption goods from
different sectors and the stock of durable consumption good

Ct “
`

ZDt Dt

˘ϑ

˜

n
ź

i“1

Cηiit

¸1´ϑ

with
N
ÿ

i“1

ηi “ 1. (11)

Final use of output from the durable manufacturing sector directly contributes to the production of
final consumption bundle only via the investment in the stock of durable consumption good Dt and
is never directly consumed as Cit.33

B. Production

There are N production sectors in the economy. The durable manufacturing sector is populated by
producers in S stages along a serial supply chain as described in Section II. All the other sectors are
modeled in the same fashion as described below without the supply chain structure.

Each production sector except the durable manufacturing sector is populated by a continuum of
producers with the same sector-specific technology for differentiated varieties. For sector j (except
the durable sector), the production technology is Cobb-Douglas and sectoral gross output satisfies

Yjt “ AjtrpK
s
jtq

αj pLjtq
1´αj ´ ϕps

θjM
1´θj
jt

where Yjt is gross output; Ajt is total factor productivity; Ks
jt is effective capital input; Ljt is labor

input; Mjt is a bundle of intermediate inputs; ϕp is a fixed cost that lowers the effective value added
32The durable consumption good is effectively a capital used for producing the final consumption bundle. One can

think of the final consumption bundle as the output from a hypothetical production sector that combines goods from
other sectors without requiring labor inputs.

33This is saying that ηi is zero for the durable manufacturing sector. Notice that the output from the durable
manufacturing sector may also serve as intermediate inputs and ingredients of investment goods for the production of
other sectors that affects the final consumption bundle indirectly. The investment in the stock of durable consumption
good is one of the uses of the durable output that directly enters the production of final consumption bundle.
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component in production.34 The parameters αj and θj are between 0 and 1. In each period, the
(variable) nominal cost incurred by the producers consists of three components and can be written as

RKjtK
s
jt `WtLjt ` PMjt Mjt

where RKjt and Wt are nominal factor prices; PMjt is the price index for the intermediate inputs
purchased in period t.

To introduce conventional nominal frictions into the model, the varieties in each sector, including
those from the last stage in the durable manufacturing sector, are aggregated into a sectoral good by
a representative sectoral good producer using a Kimball (1995) aggregator. The sectoral good from
sector i is then traded on a competitive market for three types of usage: consumption by households
denoted as Cit, intermediate use by variety producers in sector j denoted as Mijt and production of
investment goods for sector j denoted as Iijt. For consumption use Cit, sectoral goods are aggregated
into the final consumption bundle as described in Equation (11). For the other two types of usage,
sectoral goods are aggregated using a Cobb-Douglas technology such that

Mjt “

N
ź

i“1

M
γij
ijt , Ijt “

N
ź

i“1

I
λij
ijt with

N
ÿ

i“1

γij “ 1,
N
ÿ

i“1

λij “ 1.

C. The Rest of the Economy

The remaining components of the model economy are all standard in the literature, and hence only
concise summaries are provided for the sake of completeness.

Nominal Rigidities.—Facing demand curves from the sectoral producers, variety producers in
each sector set the optimal nominal prices for their output only periodically as in Calvo (1983).35

Labor unions set the wage rates for their differentiated labor in a similar staggered fashion. The
resulting Phillips curves follow Smets and Wouters (2007), except that the relevant output prices are
at the sectoral level because of the multisector environment.36

Monetary Policy.—The central bank conducts monetary policy following an inertial Taylor rule
for the risk-free nominal interest rate in response to changes in inflation, value added and value
added growth that can be written as

1 ` it “ p1 ` r˚q1´ρmp1 ` it´1qρm

«

ˆ

Pt
Pt´1

˙ψ1
ˆ

VAt
VA˚

˙ψ2
ff1´ρm ˆ

VAt
VAt´1

˙ψ3

p1 ` εitq

34The presence of ϕp effectively introduces a “wedge” into the first-order conditions for factor demand. One may
think of ϕp as a flow of operational overhead that does not contribute to the output. Such fixed costs are also present
in Christiano, Eichenbaum and Evans (2005) and Smets and Wouters (2007).

35For the durable manufacturing sector, the sluggish price setting can happen either among the producers in the
last stage or producers in all stages. This does not seem to be crucial for the later quantitative analysis.

36It is possible to allow partial inflation indexation. However, whether there is partial inflation indexation or not
does not seem to make a substantial difference on the outcomes and hence it is avoided.
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where r˚ is the steady-state real interest rate; ρm is the persistence of the policy rate; VAt is the
aggregate value added; VA˚ is the steady-state aggregate value added; εit is the monetary policy
shock.

Equilibrium.—Given a path of monetary shocks tεitut, initial stocks B´1, D´1, tKi,´1ui, tX´1|sus

initial prices tPi,´1ui, W´1, and the Taylor rule for monetary policy, a competitive equilibrium
consists of paths of prices tPt, tPitui, tPMit ui, tP Iitui, tPt|sus, PDt , Wt, RDt , tRKit ui, it, rt, tπitui,
πwt utě0 and aggregate quantities tYt, tYitui, VAt, tVAitui, Ct, tCitui, Bt, Dt, ZDt , tKitui, tZitui,
tMitui, tNtu, tLitui, Lt, tYt|sus, tEitYt|sus, tXt|sus, tZt|sus, Πtutě0 such that households maximize
their present value of utility given constraints; producers optimize their factor usage; a Phillips curve
holds in each production sector and the labor market; a Fisher equation for the risk-free interest
rate holds; labor market clears; and each sectoral goods market clears.

V. Aggregate Implications

In this section, I explore the aggregate implications of the lagged inventory-sales comovement based
on the full general equilibrium model outlined in Section IV.

A. Calibration and Estimation

The model parameters are divided into two groups. For the first group of parameters, their values
are externally calibrated either based on sample moments or convention. For the second group, the
values are chosen by minimizing the Euclidean distance between the model impulse responses and
their empirical counterparts. The methodology follows Christiano, Eichenbaum and Evans (2005),
except that for parameters directly involved in the production in durable manufacturing sector, I
use the same parameter values obtained in Section IIIA.

1. Calibrated Parameters

For some parameters, their values are directly chosen based on typical choices in prior work. They
are collected in Table 2.

TABLE 2: Parameters Externally Calibrated By Convention

Discount rate (β) 0.99
Frisch elasticity of labor supply (1{σl) 0.40
Steady-state wage markup 1.50
Curvature parameter for Kimball aggregator 10.00

The technological parameters are determined based on BEA data. The parameters for the
Cobb-Douglas production technology in each sector are calibrated based on the BEA input-output
tables. From the annual input-output tables over 1967–2006, I aggregate the private industries to a
level involving only the six sectors and compute the average shares of goods used as intermediate
inputs from each source sector in each user sector. To determine the share of labor income in the
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value added components, I aggregate industry-level data from vom Lehn and Winberry (2021),
which are also constructed from the BEA data. These data allow me to determine the values of the
Cobb-Douglas technology parameters tαj , θjuj and tγijuij . From the investment network data and
the industry-level capital depreciation rates constructed by vom Lehn and Winberry (2021) based
on the BEA data, I compute the average expenditure shares of goods from each sector that are used
as investment goods in each user sector and sector-specific capital depreciation rates at the level of
the six sectors. This gives me the values of tλijuij and tδjuj , which govern the steady-state capital
investment. From the information on final use for consumption in the input-output tables, I obtain
average expenditure shares across consumption goods produced in different sectors. Combined with
some other parameter values and a steady-state characterization of Euler equation, it is possible to
back out parameter values for the final consumption bundle ϑ and tηiui. Lastly, I assume that for all
variety producers, the steady-state share of the fixed cost in their effective value added component is
0.6.37

2. Estimated Parameters

The remaining parameters are estimated by minimizing the Euclidean distance between the model
impulse responses and their empirical counterparts. For the empirical counterparts, I interpret the
Romer-Romer shocks as innovations to the monetary policy shock and obtain impulse response
estimates via SVARs with the Romer-Romer shocks ordered the first in the same way as described
in Section I. I consider 10 outcome variables from aggregate time series data: nominal interest rate,
GDP, nondurable consumption, durable consumption, investment, durable input inventory, durable
sales, hours, wage and consumption price indices.38 These 10 variables correspond to the model
objects it, VAt, C4t, IDt , It, Xt, Yt|S , Lt, Wt and Pt respectively.39

The nonlinear least squares problem for selecting the parameter values can be written as

min
Θ

r JpΘq ´ Ĵ sTW´1r JpΘq ´ Ĵ s

with JpΘq being the model outcomes associated with a parameter vector Θ and Ĵ being the empirical
counterpart used as targets. W is a diagonal weight matrix with weights proportional to the length
of the bootstrap confidence intervals obtained for the impulse response estimates.40 The estimates
are additionally subject to a set of constraints that ensure them to fall in a range of reasonable values.
Standard errors of the estimates are obtained from the asymptotic variance-covariance matrix

V̂ “

„ˆ

BJ

BΘ
pΘ̂q

˙1

W´1 BJ

BΘ
pΘ̂q

ȷ´1

37The share of 0.6 is the posterior estimate obtained by Smets and Wouters (2007).
38Data sources and additional details for these variables are in Appendix A.
39The subscript 4 in C4t refers to the nondurable manufacturing sector.
40These weights are proportional to the estimates for standard error rather than the variance, which is different

from the popular practice. This change is made in order to assign more weights on impulse response estimates from
the median horizons where the the confidence intervals are wider but are more useful to distinguish the dynamic
behavior of different variables.
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where BJ
BΘpΘ̂q is a Jacobian matrix of J with respect to Θ evaluated at the vector of point estimates.

TABLE 3: Estimated Parameter Values

Parameter Estimate Std. Error

Household habit (λc) 0.97
Calvo price stickiness 0.70
Calvo wage stickiness 0.86 0.002
Capital utilization adjustment cost elasticity (a2p1q{a1p1q) 0.25
Durable goods utilization adjustment cost elasticity (a2

Dp1q{a1
Dp1q) 0.33 0.032

Capital investment adjustment cost sensitivity (S2
˚) 20.00

Durable goods investment adjustment cost sensitivity (S2
D˚) 13.11 0.257

Taylor rule inertia (ρm) 0.67 0.025
Taylor rule coefficient on inflation (ψ1) 1.81 0.274
Taylor rule coefficient on value added (ψ2) 0.02
Taylor rule coefficient on value added growth (ψ3) 0.40 0.230

Notes: A parameter value estimate without an accompanying standard error estimate is
constrained by an imposed boundary condition instead of an interior solution from the
nonlinear least squares problem.
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FIGURE 12: Model Impulse Responses vs Empirical Counterparts

Note: Red solid lines represent model impulse responses under estimated parameter values. Black dashed
lines represent impulse response estimates obtained from SVARs. The dotted lines show the 90% bootstrap
percentile intervals. The magnitude of shocks are normalized so that the response of nominal interest rate
is 1% on impact.
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Table 3 collects the estimated parameter values. Figure 12 compares the model impulse responses
under these parameter values with the empirical targets. The model impulse responses match their
empirical counterparts reasonably well, although there is some difficulty in capturing the somewhat
delayed trough of the investment responses. Regarding the parameter values, some of them have to
be restricted by externally imposed constraints for the solver to reach a more reasonable solution.41

The model requires rather strong habit for consumption for fitting the empirical counterparts. The
solver also tends to select relatively small value of σa ” a2p1q{a1p1q, implying a low cost for adjusting
capital utilization. This is accompanied by the tendency to select rather large S2

˚, which implies
substantial investment adjustment cost. Combined together, the solver attempts to fit the empirical
counterpart by restricting the investment in capital in favor of adjusting the capital utilization. Such
choices are conceivably due to the negligible investment responses on impact.42 With the imposed
restrictions on these two parameters, the model generates responses in investment of more reasonable
magnitude, which would have been too small in the absence of the restrictions.43 Regarding the
strength of nominal rigidity, an upper bound of 0.7 is imposed for the probability of keeping the
same sectoral good price.44

B. Aggregate Impact of Monetary Shocks

Does the lag in comovement between durable input inventories and durable sales matter for aggre-
gate outcomes? With the estimated model, it is possible to answer this question by conducting
counterfactual exercises in which certain model parameters are altered. To this end, it is useful to
first recognize that whenever a parameter value is changed, there are two reasons for the model
outcomes following the same innovation to the monetary policy shock εit to differ. First, the path
of real interest rates can be different in the general equilibrium due to the different endogenous
responses following the Taylor rule.45 Second, holding the path of real interest rates unchanged (by
letting the path of monetary shocks accommodate), the general equilibrium outcomes differ because
of the changed properties of the model under alternative parameters. For the sake of understanding
the role of inventory behavior, it seems useful to hold the path of real interest rates unchanged and
hence focus on the second way for aggregate outcomes to differ. I therefore conduct counterfactual
experiments as follows. From the model with baseline parameter values, I obtain the real interest

41In some sense, such parameters are calibrated because there is no interior solution and the constraints are externally
specified.

42A possibly related issue has also been encountered by Christiano, Eichenbaum and Evans (2005). They restrict
the value of σa to be 0.01 to prevent the solver from searching an even smaller value.

43Nonetheless, the model responses in investment still reach a trough of a smaller absolute magnitude than what
the data suggest. Model implications related to the magnitude of investment responses may have been understated
because of this.

44This value is slightly larger than what Smets and Wouters (2007) and Christiano, Eichenbaum and Evans (2005)
use in their benchmark models. However, it is smaller to what Auclert, Rognlie and Straub (2020) obtain (0.926) for
their model.

45Although monetary shocks directly affect nominal interest rates, it is more useful to focus on changes in real
interest rates because their impact on aggregate outcomes mainly takes effect via changes in real interest rates under
the estimated model. Their impact via changes in inflation expectation and their direct impact on the ordering of the
critical inputs are small.

35



rate path following a one-time monetary shock that raises the nominal interest rate by 1%. I then
alter parameter values and obtain model impulse responses when the same path of real interest rates
is fed into the model.
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FIGURE 13: Inventory-Sales Comovement with and without the Lag

A specific counterfactual experiment of interest is to explore how aggregate outcomes vary when
there is no lag in the inventory-sales comovement. That is, the cross-correlation between input
inventory and sales attains the highest value when considering their contemporaneous deviations
from the steady-state levels. For this purpose, I alter two parameters considered in Section III, the
precision of the signals received by the producers relative to the precision of prior τv{τε and the
probability of adjusting order size in a quarter λ. As shown in Figure 13b, with τv{τε being 5 and λ
being 0.6, the input inventories and sales move in the same direction throughout the horizons. In
the general equilibrium under the same real interest rate path, the responses in input inventory and
sales additionally demonstrate larger magnitude when they reach a trough, relative to the baseline
scenario shown in Figure 13a. Such differences are expected as the responses encapsulate all GE
forces with sales determined endogenously.

With the above changes to the two parameters governing inventory behavior in the durable
manufacturing sector, Figure 14a shows the impulse responses of real GDP under the baseline and
counterfactual scenarios while holding the path of real interest rates unchanged. Although the two
parameters affected are only directly relevant to a single sector of the economy, their changes result
in substantial impact on the aggregate real GDP of the entire economy. In particular, the responses
are stronger in the first year and reach a trough earlier under the counterfactual scenario. After
reaching the trough, the responses also revert back at a higher rate, resulting in GDP changes that
are less persistent than the baseline scenario. Figure 14b highlights the differences by showing the
ratios of the cumulative impact on real GDP over different horizons. It is clear that under the
counterfactual scenario, the effects on real GDP are more front loaded, with cumulative effects being
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(a) Responses of Real GDP
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FIGURE 14: Impulse Responses of Real GDP: Baseline vs Counterfactual

around 25% larger in the first year and the gap gradually declining towards zero by the end of the
fourth year.

1. GE Decompositions by the Effects of Real Interest Rates

To gain further insights on how the model predictions are altered when the lag in inventory-sales
comovement is taken out, I conduct GE decompositions following Auclert, Rognlie and Straub
(2020). Specifically, changes in real interest rates demonstrate their impact on aggregate outcomes
by perturbing two types of equilibrium conditions in the model: the Euler equation that governs
the intertemporal substitution of consumption and the no-arbitrage conditions that govern the
investment and utilization of durable consumption goods and sectoral capital. In the linearized
model, the former can be written as

p1 ` λcqĈt “ λcĈt´1 ` EtĈt`1 ´ p1 ´ λcqr̂t

while for sector-j capital, the latter can be written as

r̂t “ βp1 ´ δjqEtQ̂jt`1 ` r1 ´ βp1 ´ δjqsEtR̂Kjt`1 ´ Q̂jt

with Q̂jt being the log deviations in Tobin’s Q.46 For these two sets of equilibrium conditions, I
separately feed the real interest rate path into one of them while leaving the other unaffected. The
resulting two sets of GE outcomes represent the intertemporal substitution effect of real interest rate
changes and the user cost effect of real interest rate changes under GE. I repeat this process under
the baseline and counterfactual scenarios with the same path of real interest rates obtained under

46In the model, Tobin’s Q is the ratio between the shadow value of sector-j capital and the marginal value of
relaxing the household budget constraint. The condition for durable consumption goods is similar.
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the baseline scenario to examine the changes in aggregate outcomes solely driven by the changes in
model properties.47

(a) Aggregate GDP
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(b) Durable Sector GDP
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FIGURE 15: GE Decompositions by the Effects of Real Interest Rate Changes

Figure 15 shows the GE decompositions of GDP responses for the aggregate economy and the
durable manufacturing sector. The user cost effect of real interest rate changes takes the largest
share of the total effect in both cases. More importantly, it explains most of the differential outcome
paths between the baseline and counterfactual scenarios over the short horizons. In particular, under
the counterfactual scenario in which inventory movements do not lag sales movements, there is a
deeper decline in GDP due to the user cost effect. This decline from the durable manufacturing
sector is so strong that it largely drives the differences in the aggregate GDP responses between the
two scenarios.

Because of the importance of how production in the durable manufacturing sector affects the
aggregate GDP, it is useful to dive deeper into the changes occurred within this sector. Figure 16
shows the decompositions of stage-specific sales across the three production stages in the durable
manufacturing sector. Moving from the downstream stage 3 towards the upstream stage 1, we see
that the discrepancies between the user cost effects get larger and larger between the baseline and
counterfactual scenarios. For the baseline scenario, the decline in sales in the downstream stage 3
happens immediately following the increase in real interest rates; while the decline in sales starts
with a delay for the other two stages. When the lag in inventory-sales comovement is removed under
the counterfactual scenario, we see similar immediate decline of sales across all three stages.

What exactly are the different user cost effects that drive the bulk of the differences in the effects
47For the baseline scenario, summing up the outcomes obtained from both effects yields the total effect that is

virtually equal to what would be obtained by directly solving the impulse responses following the monetary shock. For
the counterfactual scenario, the total effect is equal to what would be obtained when holding the real interest rate
path unchanged as shown in Figure 14a. The total effect is almost the same as the effect from the one-time monetary
shock because the remaining effects from nominal interest rates that are not already captured by changes in real
interest rates are very small.
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FIGURE 16: GE Decompositions of Sales across Production Stages of Durable Sector

on GDP? By definition, the user cost effects are the changes induced by the real interest rate changes
when households choose their optimal allocations of resources on the durable consumption goods and
sectoral capital stocks. GDP changes as households adjust the investment and utilization of these
assets because of the changes in how they value these assets under the new path of real interest rates.
The supply chain frictions introduced in Section II reduce the sensitivity of such adjustment with
respect to real interest rate changes. More specifically, as illustrated in Figure 16, this reduction in
sensitivity can be attributed to the delayed responses of sales (and hence production) as the impact
on downstream sales gradually spreads toward the more upstream stages along the supply chain.
Putting together, we may interpret the different aggregate impact as follows. In the baseline scenario
where inventory movements lag sales movements, the decline of durable sales as real interest rate
goes up passes upward along the supply chain with delays. Because of these delays, the changes
in input factor demand for production induced by the decline in sales happen more gradually over
time, resulting in smaller changes in the effective capital usage and hence weaker sensitivity of the
user cost to real interest rate changes. The presence of supply chain frictions effectively act as a
mechanism for the shock to propagate across the production sectors at a lower rate.

2. Contributions of Alternative Frictions

Recall that, as discussed in Section III, the model involves three types of frictions. The one that
suppliers have to place their orders for the critical inputs one quarter in advance is held unchanged.
Changes in the other two about the information friction on aggregate sales and the Calvo-style
adjustment of order size jointly affect the lag in inventory-sales comovement in the counterfactual
experiment conducted above. In particular, to generate the comovement shown in Figure 13b without
the lag, the information friction is removed and the Calvo friction is weakened. Since reductions in
both types of frictions are involved, it is instructive to isolate their contributions to the changes in
aggregate outcomes and compare their relative importance.
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To that end, I conduct a different type of decompositions over the parameter space. The idea
is to leverage the model feature that the strength of information friction is determined by the
relative signal precision τv{τε and the strength of Calvo friction is determined by the probability
of adjustment λ. Specifically, let Yhpτv{τε, λq denote the cumulative impulse response of GDP in
the hth quarter after the monetary shock as a function of τv{τε and λ. The parameter values under
the baseline and counterfactual scenarios are denoted as pτv0{τε0, λ0q and pτv1{τε1, λ1q respectively.
With these notations, the changes in the cumulative effects on GDP between the two scenarios can
be expressed as

Yhpτv1{τε1, λ1q ´ Yhpτv0{τε0, λ0q “ Yhpτv1{τε1, λ0q ´ Yhpτv0{τε0, λ0q
loooooooooooooooooooomoooooooooooooooooooon

Information Friction

`

Yhpτv0{τε0, λ1q ´ Yhpτv0{τε0, λ0q
loooooooooooooooooooomoooooooooooooooooooon

Calvo Adjustment

` residual
looomooon

Interaction

(12)

where the total difference is decomposed into three components representing the contributions from
each type of frictions along with a residual term that can be interpreted as an interaction between
the two types of frictions. The first two components are obtained by recomputing the GE impulse
responses with only a single parameter value changed.
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FIGURE 17: Contributions of Alternative Frictions to Changes in GDP Responses

Figure 17 shows the decomposition results based on Equation (12) for both the aggregate GDP
and the sectoral GDP of the durable manufacturing sector. Notice how the contributions of the
frictions vary across horizons. Removing the information friction alone results in more negative
cumulative effects that are diverting away from the baseline levels over the first two years, but are
reverting back since then, resulting in hump-shaped curves in Figure 17. This implies that the
presence of information friction affects the GDP in such a way as if there is an intertemporal shift
that moves some of the negative effects of monetary shock towards later periods. The interaction
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between the two types of frictions further strengthens this intertemporal shift. In contrast, weakening
the Calvo friction alone results in constantly strengthening gaps of the cumulative GDP responses
between the two scenarios, which are depicted by the monotonically declining curves in Figure 17.
Despite the substantial contribution from the Calvo friction in explaining the different aggregate
outcomes under the counterfactual scenario, only the removal of the information friction and its
interaction affect the timing of the aggregate outcomes. This is an important observation because it
shows that the model prediction that the GDP responses would reach a trough earlier under the
counterfactual scenario is not mechanically driven by the higher rate at which producers adjust their
order size. It is the different optimal order size they choose when they make the adjustment that
leads to the different aggregate outcomes.

3. Upstreamness of Supply Chain

The supply chain structure has been fixed unchanged so far. How would the model predictions on
aggregate outcomes vary if production involves a different number of stages on average? To answer
this question, I examine the cumulative GDP responses across different horizons when there is a
change in the average upstreamness of the supply chain, with an upstreamness measure proposed by
Antràs and Chor (2013). Since the supply chain in the model is serial, the upstreamness measure
for each production stage s is simply S ´ s` 1, the distance towards the final demand. I therefore
define the average upstreamness of the supply chain as

U “

řS
s“1pS ´ s` 1qP˚|sY˚|s

řS
s“1 P˚|sY˚|s

where P˚|sY˚|s is the steady-state sales from stage-s producers. Intuitively, U measures the sales-
weighted average distance to the final demand. An increase in U by one can be interpreted as a
change in supply chain structure such that one more stage is required on average for each product to
arrive at the final users. Notice that this does not mean that the total number of stages existing
in the supply chain increases by one (a change in S), as the upstreamness depends on how the
production activities are distributed along the supply chain. The same increase in U can be achieved
by shifting production towards the upstream stages in different ways.

For the specific quantitative exercise conducted here, I alter U by only changing the steady-state
sales ratio between the adjacent production stages P˚|s´1Y˚|s´1

P˚|sY˚|s
. In the baseline scenario, this ratio

takes the same value for all s ą 1 denoted as ι. It is clear that U is strictly increasing in ι. A
change in ι therefore defines a specific way for U to increase. To quantify the aggregate impact of a
change in the number of production stages, I compute the cumulative impulse responses of GDP
under alternative levels of U attained by changing ι while holding all other parameters unchanged.
As before, I feed the same path of real interest rates into the model when solving the GE impulse
responses.

Figure 18 shows the results when ι is changed in such a way that U either increases by 0.5 or
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FIGURE 18: Aggregate GDP Responses under Different Supply Chain Upstreamness

decreases by 0.5. Notice that the aggregate GDP responses across the different scenarios diverge
over the first year but start to converge since then. This is reflected in the cumulative responses
as a widening gap over the initial horizons that remains stable in later horizons. Intuitively, this
observation reflects a feature of model outcomes that is captured by Figure 16. Namely, since
producers in each stage only make their choices based on what they observe from historical order
sizes, producers in different stages start to make noticeable contributions to changes in aggregate
outcomes in different periods. Under alternative supply chain structures that vary by average
upstreamness, a higher concentration of producers in the upstream further delays the spread of sales
impact. In contrast, a shift of producers towards the downstream accelerates this process. A change
in the average upstreamness of the supply chain therefore affects the strength of the intertemporal
shift of GDP impact, which is the most noticeable over the short horizons.

VI. Conclusions

In this paper, I document an overlooked feature of the comovement between inventories and sales.
Namely, durable input inventory movements lag sales movements by about three quarters. I show
that this feature is discernible in both the unconditional cyclical variation and in impulse responses
with respect to identified aggregate shocks. Existing inventory models are not readily capable of
reproducing this feature observed in data.

Motivated by the empirical finding, I develop a tractable supply chain production problem that
is capable of reproducing the lagged inventory-sales comovement. The model features multiple
production stages across a serial supply chain where producers have to order critical inputs from
suppliers in advance. In this model, producers determine the order sizes based on their biased
forecasts on future sales due to information frictions and only adjust their order sizes occasionally in
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a staggered fashion. With these two types of frictions, the model is capable of fitting the empirical
impulse responses following a monetary shock very well.

To assess the quantitative significance of the lagged inventory-sales comovement, I embed the
supply chain production problem into the durable manufacturing sector of a multisector New
Keynesian framework with input-output relations. I calibrate and estimate model parameters to
allow the model to generate hump-shaped impulse responses following a monetary shock that look
similar to their empirical counterparts obtained from SVARs. With the estimated model, I compare
baseline aggregate outcomes with those obtained under a counterfactual scenario in which input
inventory movements do not lag sales movements. The counterfactual experiment suggests that,
holding the path of real interest rates unchanged, altering the supply chain frictions in such a way
that removes the lag in comovement results in stronger responses of aggregate GDP in the first year
that reach a trough earlier but also revert back faster. General equilibrium decompositions suggest
that the different outcomes are mostly accounted by the user cost effect of real interest rates, which
in turn can be largely attributed to the delayed transmission of sales changes across production
stages in the durable manufacturing sector. Furthermore, decomposing the contributions of the two
types of model frictions governing the counterfactual outcomes suggest that the information friction
on aggregate sales underlies the intertemporal shift of the GDP impact. Increasing the average
upstreamness of the supply chain further strengthens such intertemporal shift.

Despite the stylized nature of the model economy, the findings in this paper suggest the potential
of fruitful future research on the interaction between the supply chain structure of an economy and
its aggregate outcomes. This paper has only focused on a positive aspect of the economy. Policy
implications are left for future work.
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Appendix A. Data

Time series data used for estimation are all obtained from standard sources listed below.

TABLE A.1: Time Series Data

Variable Source Series Code Frequency

Nominal value added
Gross domestic product NIPA A191RC Quarterly
Nondurable consumption NIPA DNDGRC Monthly
Durable consumption NIPA DDURRC Monthly
Fixed investment NIPA A007RC Quarterly

Real inventories and gross sales
Numerous series from NIPA underlying detail tables Monthly

Employment
Weekly hours CES AWHNONAG (FRED) Monthly
Employment level CPS CE16OV (FRED) Monthly
Unemployment rate CPS UNRATE (FRED) Monthly
Population NIPA B230RC Quarterly

Prices
Consumption price deflator NIPA DPCERG Monthly
Producer price index: All commodities PPI PPIACO (FRED) Monthly
Producer price index: Intermediate demand,

Materials and components for manufacturing PPI WPSID611 (FRED) Monthly

Hourly earnings CES AHETPI (FRED) Monthly
Federal funds rate H15 FEDFUNDS (FRED) Monthly

Other
Industrial production: Total index G17 INDPRO (FRED) Monthly

Notes: NIPA—National Income and Product Accounts from US Bureau of Economic Analysis; CES—Current
Employment Statistics from US Bureau of Labor Statistics; CPS—Current Population Survey from US Census
Bureau; PPI—Producer Price Indexes from US Bureau of Labor Statistics; H15—H.15 Selected Interest Rates
from Board of Governors of the Federal Reserve System; G17—G.17 Industrial Production and Capacity
Utilization from Board of Governors of the Federal Reserve System. Series code is either assigned by the original
data source or Federal Reserve Economic Data (FRED).

Real inventories and sales data from NIPA underlying detail tables are only based on the
Standard Industrial Classification (SIC) before 1997 and only based on the North American Industrial
Classification System (NAICS) since then. To obtain continued measurement at the broad level of
durable manufacturing industry, I splice the corresponding time series and adjust the log scale of the
SIC series so that the one-year growth rates over months that are affected by the transition point
are comparable to the adjacent ones in 1997 that are based on NAICS.48 To construct data for real
input inventories, I use the real inventory data by stage of fabrication and sum up the materials and
supplies with work-in-process.49

48Inventory data in 1997 are available under both SIC and NAICS. I take advantage of the overlapped data for
rescaling the SIC data. For sales data, there is no overlap and I instead use the 1996 and 1997 data.

49In general, summation of time series data should be based on nominal data for maintaining appropriate weights
across individual components over time. However, there are no separate price indices for inventories in different stages.
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For variables that are involved in the impulse response estimation, they are constructed as
follows. Since the SVARs are estimated at the monthly frequency, I transform the data that are
only available at the quarterly frequency to the monthly frequency by linear interpolation. All
the nominal variables are converted to real quantities using the same consumption price deflator
(NIPA DPCERG) and divided by population. For labor supply, I adjust the weekly hours data by
multiplying the employment rate that is computed as the ratio between employment and population
levels. I use the federal funds rate as the nominal interest rate. Inflation rate is computed as the
annual growth rate of the consumption price deflator. Real interest rate is computed as the difference
between the nominal interest rate and the one-month-ahead inflation rate. I use the ratio between
hourly earnings and the consumption price deflator as real wage. For estimation, I take the log
transformation for all variables except the interest rates and inflation rates that are already in
percentage terms.

Appendix B. Additional Results on Inventory-Sales Comovement

This section provides additional results on the inventory-sales comovement.

A. Summary Statistics

Table B.1 collects summary statistics for different types of inventories across two sample periods.
Data for the earlier sample are based on the SIC industries; while those for the more recent sample
are based on the NAICS industries. Notice that input inventory (sum of materials and supplies
and works-in-process) from the durable manufacturing sector constitutes about a quarter of the
total inventory over the main sample period (1970–1996). It has also been the most volatile based
on the standard deviation of the annual growth rates over this earlier sample period. However,
the volatility of the finished-goods inventory in the durable manufacturing sector seems to become
larger over the second sample period. This is largely due to the extraordinarily fast growth in the
finished-goods inventory towards the end of 1990s. The share of input inventory also seems to be
declining. Nonetheless, it still remains an important component of aggregate inventory based on the
magnitude and volatility.

B. Other Inventory-Sales Comovement

The main text has focused on the lagged inventory-sales comovement between input inventory and
sales in the durable manufacturing sector. Here, for the sake of completeness, I show the estimation
results for the other types of inventories that are available in the NIPA underlying detail tables.

Since the summation of real inventories across all three stages is very similar to the provided total real inventories, I
consider the summation across real inventories as innocuous.
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TABLE B.1: Summary Statistics for Inventories

1970–1996 1997–2019

Share (%) Volatility (%) Share (%) Volatility (%)

Manufacturing 48.31 3.07 39.93 2.84

Durable goods 31.49 4.21 24.40 3.61
Materials and supplies 9.56 5.59 8.64 3.81
Works-in-process 14.04 5.35 9.04 4.40
Finished goods 7.88 3.64 6.74 4.93

Nondurable goods 17.36 2.14 16.32 2.68
Materials and supplies 6.85 2.79 5.86 2.92
Works-in-process 2.76 2.99 2.91 5.63
Finished goods 7.74 3.24 7.56 2.26

Wholesale 25.07 3.47 27.82 3.74
Durable goods 17.56 4.14 17.59 5.50
Nondurable goods 7.88 4.36 11.08 2.76

Retail 26.62 3.96 32.25 3.87

Notes: “Share” refers to the average share of the (nominal) stock of each type of inventory in the
total level. “Volatility” is computed as the standard error of the annual growth rate of each type of
inventory. Data are based on the monthly time series from the NIPA underlying detail tables.

1. Unconditional Comovement

Figures B.1–B.4 plot the coefficients for cross-correlations between inventories and sales over different
leads/lags in different sectors. The coefficients for the durable wholesale sector and the retail sector
also demonstrate a pattern that looks similar to the input inventories in the durable manufacturing
sector. However, as we shall see shortly, this is no longer the case for the conditional comovement.

2. Comovement Following Monetary Shocks

Figure B.5 shows the results between input inventory and sales for the nondurable manufacturing
sector instead of the durable one. Although the nondurable sector also demonstrates some lagged
comovement, the contemporaneous correlation is much stronger and the lag is shorter. This is a
reason for why the main text only focuses on the durable sector.

The remaining types of inventories are all output inventories in the sense that they are not used as
inputs for the production of the firms that hold these inventories. Notice that, as shown in Table B.1,
the majority of the output inventories are held by wholesalers and retailers. Output inventories held
by manufacturers are often thought of as goods that are to be shipped to these wholesalers and
retailers. Figures B.6 and B.7 show that the output inventory in the manufacturing sector seems
to act as a buffer for their sales. In particular, the contemporaneous correlation coefficients are
both negative, suggesting a role that is consistent with the production smoothing motive instead
of the (positive) comovement that is emphasized at the more aggregate level. For the wholesale
and retail sectors, the results are shown in Figures B.8–B.10. Unlike the output inventories held
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FIGURE B.1: Cross-Correlations between Nondurable Input Inventories and Sales

Note: The correlation coefficients are for ρpInventoryt, Salest´lq across different values of l.
Annual growth rates are computed as log differences with the 1-year lag. Cyclical components
are two-year horizon forecast errors following Hamilton (2018). Dashed lines represent 90%
confidence intervals based on robust standard errors obtained from a GMM Newey and West
(1987) procedure.
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FIGURE B.2: Cross-Correlations between Durable Wholesale Inventories and Sales

Note: The same note for Figure B.1 applies.

by the manufacturers that look like buffer, these inventories comove with the sales with rather
high contemporaneous correlation coefficients. There does not seem to be meaningful lag with the
inventory-sales comovement in these sectors. Combining all results together, it seems that the lagged
comovement best describes the input inventories within the durable manufacturing sector but to a
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FIGURE B.3: Cross-Correlations between Nondurable Wholesale Inventories and
Sales

Note: The same note for Figure B.1 applies.
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FIGURE B.4: Cross-Correlations between Retail Inventories and Sales

Note: The same note for Figure B.1 applies.

less extent for the other types of inventories.
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FIGURE B.5: Input-Inventory-Sales Comovement in the Nondurable Manufacturing
Sector
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FIGURE B.6: Output-Inventory-Sales Comovement in the Durable Manufacturing
Sector
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FIGURE B.7: Output-Inventory-Sales Comovement in the Nondurable Manufacturing
Sector
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FIGURE B.8: Inventory-Sales Comovement in the Durable Wholesale Sector
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FIGURE B.9: Inventory-Sales Comovement in the Nondurable Wholesale Sector
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FIGURE B.10: Inventory-Sales Comovement in the Retail Sector
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C. Alternative Trend-Cycle Decompositions

The preferred detrending method is Hamilton (2018). Here, I explore the results when data are
detrended with alternative methods. Figures B.11 and B.12 plots the cyclical fluctuations obtained
with the band-pass filter proposed by Baxter and King (1999) and the Hodrick-Prescott filter. Despite
the differences in how cyclical components are defined, we can discern the lagged inventory-sales
comovement from all these plots.
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FIGURE B.11: Cyclical Fluctuations Based on Baxter and King (1999)

Month

1970 1980 1990 2000 2010 2020

D
ev

ia
tio

n 
fr

om
 T

re
nd

 (
%

)

-20

-10

0

10

Real Input Inventories Real Sales

FIGURE B.12: Cyclical Fluctuations Based on Hodrick-Prescott Filter
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D. Results at the 2-Digit SIC Industry Level

I explore the robustness of the empirical results by reconducting the estimation at the 2-digit SIC
industry level.50 The purpose of doing so is to rule out the possibility that the lagged comovement
observed is driven by a small subset of the industries with extraordinary properties. Figure B.13
collects the cross correlations for each of the 11 durable 2-digit SIC industries. For conditional
cross-correlations, the analogous estimation based on SVAR is repeated and the results are collected
in Figure B.14. It turns out that, at least at the 2-digit SIC level, the lagged inventory-sales
comovement is a common feature across most of the durable industries.
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FIGURE B.13: Unconditional Cross-Correlations Among 2-Digit SIC Industries
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FIGURE B.14: Conditional Cross-Correlations Among 2-Digit SIC Industries

50For this purpose, the sample only covers 1967:1–1996:12 because data since 1997 are all based on the North
American Industry Classification System.
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Appendix C. Details on Existing Inventory Models

This section provides some essential details for the models considered in Section IC.

1. The Precautionary Stockout-Avoidance Motive

Production consists of two stages. In the first stage, the same technology is used to produce a
continuum of varieties txktukPr0,1s. These varieties enter input inventories after being produced. In
the second stage, when idiosyncratic demand shocks are realized, varieties from the input inventories
are aggregated into a sectoral good

Yt “ At

ˆ
ż 1

0
ωkts

ξ
ktdk

˙

1
ξ

with Prpωkt ą ωq “ ω´κ for ω ą 1

where the idiosyncratic shocks ωkt to varieties are independent and follow the same Pareto distribution.
The law of motion of input inventories for each variety follows

hkt`1 “ p1 ´ δhqhkt ` xkt ´ skt

where δh is the depreciation rate for inventories. Letting Ht “
ş1
0 hktdk, Xt “

ş1
0 xktdk and

St “
ş1
0 sktdk, the law of motion for the aggregate quantities can be written as

Ht`1 “ p1 ´ δhqHt `Xt ´ St.

Let Fjpωq ” 1 ´ ω´κj be the distribution function for the Pareto distribution. Leveraging
the results from Wen (2011), the optimality conditions can be expressed in terms of the following
functions of a cutoff level of idiosyncratic shock ω˚

t

Rpω˚
t q ” Fjpω

˚
t q `

ż

ωąω˚
t

ω

ω˚
t

dFjpωq

Spω˚
t q ”

ż

ωďω˚
t

ω
1

1´ξ dFjpωq `
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ωąω˚
t

pω˚
t q

1
1´ξ dFjpωq

Hpω˚
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t

”

pω˚
t q

1
1´ξ ´ ω

1
1´ξ

ı

dFjpωq

Gpω˚
t q ”
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t

ω
1

1´ξ dFjpωq `
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t

ωpω˚
t q

ξ
1´ξ dFjpωq.
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The optimality conditions relevant to the partial equilibrium outcomes can be written as

µt “ βp1 ` rtqEtµt`1 (Consumption Euler Equation)

ιt “ µtAtRpω˚
t qGpω˚

t q
1´ξ
ξ (Shadow Value of Inventories)

AtSt “ YtSpω˚
t qGpω˚

t q
´ 1

ξ (Aggregate Demand of Varieties)

Xt “ St

ˆ

1 `
Hpω˚

t q

Spω˚
t q

˙

´ p1 ´ δhqHt´1 (Inventory Law of Motion)

Ht “ St
Hpω˚

t q

Spω˚
t q

(Optimal Inventory Level)

ιt
µt

“
1 ´ δh

1 ` rt
Et
ιt`1

µt`1
Rpω˚

t q. (Inventory Euler Equation)

2. Multistage Production

This model is based on Sarte, Schwartzman and Lubik (2015), which features production technology
that combines output from multiple stages that are produced in different periods. Specifically,
suppose there are S ` 1 production stages with output from each stage used as a component for the
sectoral good in the sth period after being produced with s being 0, . . . , S. Production of components
to be used in all of the S future periods and the current period s “ 0 satisfies

Xt ”

S
ÿ

s“0

Xt|s “ At

´

K
αj

t L
1´αj

t

¯θj
M

1´θj
t

where Xt|s is the amount of components produced with factors in period t to be used in period
t` s.51 The sectoral good is aggregated from the components produced across multiple periods

Yt “

˜

S
ÿ

s“0

ωsX
ξ
t´s|s

¸

1
ξ

.

The law of motion of aggregate input inventories for a sector can be written as

Ht`1 “ Ht `

S
ÿ

s“1

Xt|s ´

S
ÿ

s“1

Xt´s|s.

51Production of different stages uses the same technology and factors may be reallocated across stages without
friction. However, once produced, the time when the component is used is fully determined by the production stage s
and cannot be altered. Also notice that the notation used in subscripts differs from that used by Sarte, Schwartzman
and Lubik (2015) in that the last index after the vertical bar is expressed as relative time instead of calendar time.
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The first order conditions relevant to the partial equilibrium outcomes can be written as

µt “ βp1 ` rtqEtµt`1 (Consumption Euler Equation)

ιt “ µtω0X
ξ´1
t|0 Y 1´ξ

t (Shadow Value of Inventories)
ιt
µt

“
1

śs´1
s1“0p1 ` rt`s1q

Et
´

ωsX
ξ´1
t|s Y 1´ξ

t`s

¯

, @s P t1, . . . , Su. (Inventory Euler Equation)

Appendix D. Additional Model Details

This section provides additional model details.

A. The Inventory Problem

Here I consider the inventory problem in Section II.

1. Optimality Conditions

For producer i in stage s with s ą 1, the first order condition for choosing the optimal order size
X˚
it|s´1 at the beginning of period t can be written as

Eit
8
ÿ

l“0

p1 ´ λql

śl
l1“0p1 ` it`l1q

»

–p1 ` it`lqPjt`l|s´1 ´ PZjt`l`1

˜

υZit`l`1|s

p1 ´ υqX˚
it|s´1

¸
1
κ

fi

fl “ 0 (13)

where

Zit`l`1|s “

¨

˝

pYit`l`1|s{Asq
κ´1
κ ´ υ

1
κ pX˚

it|s´1q
κ´1
κ

p1 ´ υq
1
κ

˛

‚

κ
κ´1

.

Log-linearizing Equation (13) around a steady state with zero inflation yields

1

m

8
ÿ

l“0

βlp1 ´ λql
„

P̂jt`l|s´1 ´ P̂Zjt`l`1 ` ît`l ´
1

κ

´

Ẑit`l`1|s ´ X̂˚
it|s´1

¯

ȷ

“ 0

where m ”
ř8
l“0 β

lp1 ´ λql is a constant only depending on parameters and

Ẑit`l`1|s “
1

χs
Ŷit`l`1|s ´

1 ´ χs
χs

X̂˚
it|s´1

with

χs ”
p1 ´ υq

1
κZ

κ´1
κ

˚|s

υ
1
κX

κ´1
κ

˚|s´1 ` p1 ´ υq
1
κZ

κ´1
κ

˚|s

.
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The above equation can be rewritten as

X̂˚
it|s´1 “

1

m

8
ÿ

l“0

βlp1 ´ λql
”

κχspP̂
Z
jt`l`1 ´ ît`l ´ P̂jt`l|s´1q ` EitŶit`l`1|s

ı

.

It follows that the aggregate order size for stage-ps´ 1q output can be written as

X̂t|s´1 “ λ
ÿ

lě0

p1 ´ λqlEit´lX̂˚
it´l|s´1. (14)

Assuming that all producers have the same inventory-to-sales ratio h˚ in the steady state, the
aggregate input inventories across all stages satisfy

X̂t “
1

h

S
ÿ

s“2

hS´s
˚ X̂t|s

where h ”
řS
s“2 h

S´s
˚ .

2. Pricing

The log deviations in aggregate price index for stage-s output is characterized based on two
observations. First, since the changes in aggregate sales effectively scale up or down the marginal
cost of each individual producer by the same proportion, there is no need to keep track of the
changes in sales across individual producers. Second, because of the Calvo-style adjustment, changes
in marginal cost can be characterized recursively as follows. Let M˚

tl|s be the average marginal cost
at time t among producers who have last adjusted order sizes l periods ago. Because the adjustment
shock is independent from other changes, the average marginal cost across all producers can be
written as

Mt|s “ p1 ´ λqM1´η
t´1|s ` λM˚

t1|s

“ λ
8
ÿ

l“1

p1 ´ λql´1M˚
tl|s. (15)

It follows from Equation (4) that

M̂˚
tl|s “ P̂Zt `

1 ´ χs
κχs

pŶt|s ´ Eit´lX̂˚
it´l|s´1q. (16)

With the constant markup, combining Equations (14)–(16) yields

P̂t|s “ P̂Zt `
1 ´ χs
κχs

pŶt|s ´ X̂t´1|s´1q.
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B. Additional Model Outcomes under the Partial Equilibrium

As mentioned in Section III, the model responses produced there are based on three paths of changes
that are fed into the model simultaneously. Figure D.1 shows the model outcomes when these
three paths are fed into the model separately. The three paths of input inventory responses can
be interpreted as a decomposition of the total responses when only a single source of changes are
allowed. As expected, the rise in interest rate discourages the use of input inventories because of the
higher price of purchasing in advance. For the model to generate outcomes that are close to the
empirical target, the effects from the changes in interest rate and prices need to be relatively small.
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FIGURE D.1: Input Inventory Responses by Source of Changes
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